China Custom Cat Universal Joint U-Joint Cross 5-6128 Spider Kits

Product Description

CAT universal joint
Length: 140.45 mm
Outer diameter: 42.88 mm
1) Material: 20CR/20CRMNTI/8620H
2) MOQ:500PCS
3) Can be designed and developed according to customers’ drawings or samples

Inner packing:
Packed with plastic sacks and paper boxes

Outer packing:
Packed with paper cartons and wooden pallets

FIG Part No. C L Series BEARING TYPE Interchange No.
G 951 33.34 79.37 2C  4LWT 5-2002X HS520   1250
G 994 33.34 79.37 4LWD   HS521   316117
G 952 33.34 79.37 2LWT,2LWD 5-2116X HS522 1063 6S6902
G 536 36.5 90.4 3C 4LWT 5-3000X HS530 1711 5D9153
G 535 36.5 90.4 2LWT,2LWD 5-3014X HS532   9K1976
G 966 36.5 90.4 2LWT,2HWD   HS533     
G 540 36.5 108 4C 4LWT 5-4002X HS540 1703 6F7160
G 969 36.5 108 4HWD 5-4143X HS545 1689 6K 0571
G 541 36.5 108 2LWT,2LWD 5-4123X HS542 1704 6H1262
G 929 36.5 108 2LWT,2HWD 5-4140X HS543 J4130 5M0800
G 550 42.88 115.06 5C 4LWT 5-5000X HS550 1720 7J5251
G 968 42.88 115.06 4HWD 5-5177X HS555 1728 2K3631
G 552 42.88 115.06 2LWT,2LWD 5-5121X HS552 1721 7J5245
G 933 42.88 115.06 2LWT,2HWD 5-5173X HS553 1722  
G 486 49.22 130   4HWD        
G 896 49.22 134.8 2LWT,2HWD 5-5802X   1877 9C 0571
G 560 42.88 140.45 6C 4LWT 5-6000X HS560 1820  
G 905 42.88 140.45 4HWD 5-6106X HS565 1826 1S9670
G 563 42.88 140.45 2LWT,2HWD 5-6102X HS563 1822  
G 493 42.88 140.45 6C X 7C 2LWT,2LWT 5-6108X    1828  
G 49.22 148.4
G 569 42.88 140.45 2LWT,2HWD 5-6109X    1829  
G 49.22 148.4
G 568 42.88 140.45 2LWD,2LWT        
G 49.22 148.4
G 570 49.22 148.4 7C 4LWT 5-7000X HS570 1841 8F7719
G 927 49.22 148.4 4HWD 5-7105X HS575 1840 2H 0571
G 581 49.22 206.31 8C 4LWT 5-8200X HS580 1851 XX7146
G 584 49.22 206.31 4LWD 5-8203X HS581 1854  
G 928 49.22 206.31 4HWD 5-8105X HS585 1850 6H2579
G 582 49.22 206.31 2LWT, 2LWD 5-8201X HS582 1852  
G 783 49.22 206.31 2DWT, 2HWD 5-8202X HS583 1853  
G 785 71.4 165 8.5C 4LWT 5-8500X HS680   7K0442
G 963 71.4 165 4HWD 5-8516X HS685   2V7153
G 950 71.4 165 2LWT, 2HWD   HS683     
G 793 71.4 209.51 9C 4DWT 5-9000X HS590 1864 9H9491
G 911 71.4 209.51 4HWD 5-9016X HS595 1868 9V7710
G 792 71.4 209.51 2LWT, 2HWD 5-9002X HS593 1865  
G GUIS67 56 174   4LWD        


/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Warranty: 2year or 50000km
Color: Natural Color
Certification: IATF16949:2016
Structure: Single
Material: 20cr/20crmnti
Transport Package: Colour Box+Carton Box+Wooden Box
US$ 15/Piece
1 Piece(Min.Order)

Request Sample



Customized Request

universal joint

How do you calculate the torque capacity of a universal joint?

Calculating the torque capacity of a universal joint involves considering various factors such as the joint’s design, material properties, and operating conditions. Here’s a detailed explanation:

The torque capacity of a universal joint is determined by several key parameters:

  1. Maximum Allowable Angle: The maximum allowable angle, often referred to as the “operating angle,” is the maximum angle at which the universal joint can operate without compromising its performance and integrity. It is typically specified by the manufacturer and depends on the joint’s design and construction.
  2. Design Factor: The design factor accounts for safety margins and variations in load conditions. It is a dimensionless factor typically ranging from 1.5 to 2.0, and it is multiplied by the calculated torque to ensure the joint can handle occasional peak loads or unexpected variations.
  3. Material Properties: The material properties of the universal joint’s components, such as the yokes, cross, and bearings, play a crucial role in determining its torque capacity. Factors such as the yield strength, ultimate tensile strength, and fatigue strength of the materials are considered in the calculations.
  4. Equivalent Torque: The equivalent torque is the torque value that represents the combined effect of the applied torque and the misalignment angle. It is calculated by multiplying the applied torque by a factor that accounts for the misalignment angle and the joint’s design characteristics. This factor is often provided in manufacturer specifications or can be determined through empirical testing.
  5. Torque Calculation: To calculate the torque capacity of a universal joint, the following formula can be used:
    Torque Capacity = (Equivalent Torque × Design Factor) / Safety Factor

    The safety factor is an additional multiplier applied to ensure a conservative and reliable design. The value of the safety factor depends on the specific application and industry standards but is typically in the range of 1.5 to 2.0.

It is important to note that calculating the torque capacity of a universal joint involves complex engineering considerations, and it is recommended to consult manufacturer specifications, guidelines, or engineering experts with experience in universal joint design for accurate and reliable calculations.

In summary, the torque capacity of a universal joint is calculated by considering the maximum allowable angle, applying a design factor, accounting for material properties, determining the equivalent torque, and applying a safety factor. Proper torque capacity calculations ensure that the universal joint can reliably handle the expected loads and misalignments in its intended application.

universal joint

How do you prevent backlash and vibration issues in a universal joint?

Preventing backlash and vibration issues in a universal joint involves various considerations and measures. Here are some approaches to minimize backlash and mitigate vibration problems:

  • Precision manufacturing: High-quality, precision-manufactured universal joints can help reduce backlash and vibration. Accurate machining and assembly processes ensure tight tolerances and minimize clearances between components, resulting in improved performance and reduced backlash.
  • Proper lubrication: Adequate lubrication is essential to minimize friction and wear, which can contribute to backlash and vibration. Using the recommended lubricant and following the manufacturer’s guidelines for lubrication intervals help ensure smooth operation and reduce backlash in the joint.
  • Alignment: Proper alignment between the input and output shafts is crucial for minimizing backlash and vibration. Aligning the shafts within the manufacturer’s specified tolerances ensures that the joint operates within its designed parameters, reducing stress and potential backlash issues.
  • Balance: Balancing the rotating components, such as yokes and crosses, helps minimize vibration. Imbalances can cause uneven forces and induce vibrations in the joint and the connected system. Balancing techniques, such as adding counterweights or using precision balancing equipment, ensure smoother operation and minimize vibration-related problems.
  • Vibration damping: Applying vibration damping techniques can help mitigate vibration issues. This may involve using vibration-absorbing materials, such as rubber or elastomeric elements, at appropriate locations to absorb and dissipate vibrations. Dampening vibrations can reduce the transmission of unwanted motion and minimize the potential for backlash.
  • Regular maintenance: Routine inspection and maintenance of the universal joint are essential to prevent backlash and vibration problems. This includes checking for wear, proper lubrication, and addressing any signs of misalignment or damage. Timely maintenance helps identify and rectify potential issues before they escalate and affect the performance and reliability of the joint.
  • Appropriate joint selection: Choosing the right type of universal joint for the specific application is crucial. Different joint designs, such as single joint, double joint, constant velocity (CV) joint, or Cardan joint, have varying characteristics and capabilities. Assessing the requirements of the system and selecting a joint that suits the application can help minimize backlash and vibration issues.

Implementing these measures and considering the specific operating conditions and requirements of the system can help prevent or minimize backlash and vibration issues in a universal joint. It is important to consult the manufacturer’s guidelines and recommendations for proper installation, operation, and maintenance of the universal joint to ensure optimal performance and longevity.

universal joint

Can you provide examples of vehicles that use universal joints?

Universal joints are commonly used in various types of vehicles for transmitting torque between shafts that are not in a straight line or are at an angle to each other. Here are some examples of vehicles that use universal joints:

  • Automobiles: Universal joints are widely used in automobiles for transmitting torque from the engine to the rear wheels in rear-wheel drive vehicles. They are commonly found in the driveline, connecting the transmission or gearbox to the driveshaft, and in the driveshaft itself. Universal joints are also used in front-wheel drive vehicles for transmitting torque from the transaxle to the front wheels.
  • Trucks and commercial vehicles: Universal joints are utilized in trucks and commercial vehicles for transmitting torque between various components of the drivetrain. They can be found in the driveshaft, connecting the transmission or gearbox to the rear differential or axle assembly.
  • Off-road vehicles and SUVs: Universal joints are extensively used in off-road vehicles and SUVs that have four-wheel drive or all-wheel drive systems. They are employed in the driveline to transmit torque from the transmission or transfer case to the front and rear differentials or axle assemblies.
  • Military vehicles: Universal joints are utilized in military vehicles for transmitting torque between different components of the drivetrain, similar to their use in trucks and off-road vehicles. They provide reliable torque transfer in demanding off-road and rugged environments.
  • Agricultural and construction machinery: Universal joints are commonly found in agricultural and construction machinery, such as tractors, combines, excavators, loaders, and other heavy equipment. They are used in the drivelines and power take-off (PTO) shafts to transmit torque from the engine or motor to various components, attachments, or implements.
  • Marine vessels: Universal joints are employed in marine vessels for transmitting torque between the engine and the propeller shaft. They are used in various types of watercraft, including boats, yachts, ships, and other marine vessels.
  • Aircraft: Universal joints are utilized in certain aircraft applications, such as helicopters, to transmit torque between the engine and the rotor assembly. They allow for angular displacement and smooth transmission of power in the complex rotor systems of helicopters.
  • Industrial machinery: Universal joints find applications in various types of industrial machinery, including manufacturing equipment, conveyors, pumps, and other power transmission systems. They enable torque transmission between non-aligned or angularly displaced shafts in industrial settings.

Please note that the specific usage of universal joints may vary depending on the vehicle design, drivetrain configuration, and application requirements. Different types of universal joints, such as single joint, double joint, constant velocity (CV) joint, or Cardan joint, may be employed based on the specific needs of the vehicle or machinery.

China Custom Cat Universal Joint U-Joint Cross 5-6128 Spider Kits  China Custom Cat Universal Joint U-Joint Cross 5-6128 Spider Kits
editor by CX 2024-03-10