China Standard IATF 16949 OEM Factory One-Stop Service Prototype/Drawing Customization Bespoke Machinery Part Industrial Components Truck Part Steering Knuckle Universal Joint

Product Description

Product Description

Item Iron/Steel/Metal/Alloy CHINAMFG Hardware Parts with Precision CNC Machining Process for Auto/Car/Truck/Tractor/Trailer//Forklift/Commercial Vehicle/Train/Railway/Mining/Construction/Building/Shipbuilding/Metallurgical Machine/Machinery/Industrial/Equipment components Customized Heavy-Duty Truck Parts Steering Knuckle universal joint
Surface Treatment Shot Blasting, Electrophoretic Coating
Surface Roughness Ra0.05∼Ra50, at customer’s request
Standard GB, ASTM, AISI, DIN, NF, JIS, BS, AS, AAR, etc.
Certification ISO 9 tons of products to more than 12 clients in 2571. W e not only ensure sufficient supply, but also guarantee punctual delivery.

Based in China, Serving the globe – Focusing on creating more value for global customers.
“ISO9 tons of products to more than 12 clients in 2571. We not only ensure sufficient supply capacity, but also guarantee punctual delivery.

4* Highly efficient logistics system and convenient transportation condition
In terms of logistics transportation, our factory possesses a great geographical advantage – its only 1 and a half hours’ drive from our factory to the nearest shipping port-HangZhou Port-which makes our logistical system more efficient and ensures smooth and punctual delivery.

5* Modern laboratory and strict quality control system
All raw materials should be sampled and analyzed in our inspection laboratory when they reach our factory, only after passing the inspection can the raw materials be stored into our warehouse. Each batch of products from raw materials to finished products will be tested in the laboratory to ensure that the quality meets the contract requirements. Each batch of finished products will be carried out spectral inspection. For specific products tensile test will be conducted to ensure that the tensile strength of products is up to the standards.

6* Wide application of products
Our products and customization service cover a wide range of industries, including
Auto/automobile/automotive, car, truck/lorry, commercial vehicle, forklift/lifting equipment, combine harvester, farm/agricultural machinery, mining machinry, engineering machinery, construction/building machinery/vehicle(crane/hoist, excavator, bulldozer, dump/dumper/self-dumping/self-discharging truck, concret/cement mixer truck, pump truck, crusher…), petroleum/ petrochemical/oil drilling/metallurgical machinery, shipbuilding machinery, locomotive, bullet train, high-speed railway, underground/subway/metro, tractor, trailer, industrial equipment, marine/ship machinery(Turbine, propeller…), defense//military/ordnance equipment(Tank, armoured troop carrier, amphibious equipment…), power plant, wind power generator/tower, wind turbine, lift/elevator/escalator, medical equipment, food machinery, aviation equipment/instrumentation, pump, valve, gearbox, motor/engine, motorcycle, Lathe machine tools, …etc. We can produce any kind of castings with high precision CNC machining process as per customer’s drawings/sample/requirements/technical parameters.

7* Strict product information tracking
Each of finished products will be assigned 1 unique identification, especially for those made from different batches of raw materials will be recorded and archived with raw material batch number and factory production code to facilitate tracing in case of quality discrepancy or any disagreement on the quality.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Color: Natural Color, Silver, Black
Certification: CE, DIN, ISO
Structure: Customized
Material: Alloy Steel
Type: Customized
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

universal joint

How do you ensure proper alignment when connecting a universal joint?

Ensuring proper alignment when connecting a universal joint is essential for its optimal performance and longevity. Here’s a detailed explanation:

Proper alignment of a universal joint involves aligning the input and output shafts to minimize angular misalignment and maintain a smooth and efficient power transfer. Here are the steps to ensure proper alignment:

  1. Measure shaft angles: Begin by measuring the angles of the input and output shafts that the universal joint will connect. This can be done using a protractor or an angle measuring tool. The angles should be measured in relation to a common reference plane, such as the horizontal or vertical.
  2. Calculate the operating angle: The operating angle of the universal joint is the difference between the angles of the input and output shafts. This angle determines the amount of angular misalignment that the universal joint needs to accommodate. It is crucial to calculate the operating angle accurately to ensure the proper selection of a universal joint suitable for the application.
  3. Select the appropriate universal joint: Based on the calculated operating angle, choose a universal joint that is designed to handle the specific misalignment requirements. Universal joints come in various sizes and designs to accommodate different operating angles and torque loads. Refer to the manufacturer’s specifications and guidelines to select the appropriate universal joint for the application.
  4. Achieve parallel alignment: To ensure proper alignment, it is important to align the input and output shafts so that they are parallel to each other when viewed from the common reference plane. This can be achieved by adjusting the mounting positions of the shafts or using alignment tools such as straightedges or laser alignment systems. The goal is to minimize any offset or skew between the shafts.
  5. Check centerline alignment: Once the shafts are parallel, it is necessary to check the centerline alignment. This involves verifying that the centerline of the input shaft and the centerline of the output shaft are in line with each other. Misalignment in the centerline can result in additional stress on the universal joint and lead to premature wear or failure. Use measurement tools or visual inspection to ensure the centerline alignment is maintained.
  6. Securely fasten the universal joint: After achieving proper alignment, securely fasten the universal joint to the input and output shafts according to the manufacturer’s recommendations. Follow the specified torque values for the fasteners to ensure proper clamping force without over-tightening. This will help maintain the alignment during operation.
  7. Perform regular maintenance: To ensure continued proper alignment, it is important to perform regular maintenance, including periodic inspections and lubrication of the universal joint. Regular maintenance can help detect any misalignment or wear issues early on and prevent further damage or failure.

By following these steps and paying attention to proper alignment, the universal joint can operate smoothly and effectively, minimizing stress, wear, and the risk of premature failure.

In summary, ensuring proper alignment when connecting a universal joint involves measuring shaft angles, calculating the operating angle, selecting the appropriate universal joint, achieving parallel alignment, checking centerline alignment, securely fastening the joint, and performing regular maintenance.

universal joint

What materials are commonly used in the construction of universal joints?

Universal joints are constructed using various materials that provide strength, durability, and resistance to wear and fatigue. Here’s a detailed explanation:

The choice of materials for universal joints depends on factors such as the application, load requirements, operating conditions, and cost considerations. Here are some commonly used materials:

  • Steel: Steel is one of the most common materials used in universal joint construction. Alloy steels, such as 4140 or 4340, are often employed due to their high strength, toughness, and resistance to wear and fatigue. Steel universal joints can withstand heavy loads and harsh operating conditions, making them suitable for various industrial applications.
  • Stainless Steel: Stainless steel is chosen for universal joints when corrosion resistance is a critical requirement. Stainless steel alloys, such as 304 or 316, offer excellent resistance to rust, oxidation, and chemical corrosion. These joints are commonly used in applications where exposure to moisture, chemicals, or harsh environments is expected.
  • Cast Iron: Cast iron is occasionally used in universal joints, particularly in older or specialized applications. Cast iron provides good strength and wear resistance, but it is generally heavier and less flexible than steel. It may be used in specific situations where its properties are advantageous, such as in large industrial machinery.
  • Aluminum: Aluminum universal joints are utilized when weight reduction is a priority. Aluminum alloys offer a good balance of strength and lightweight properties. These joints are commonly found in applications where weight savings are crucial, such as aerospace, automotive, or robotics.
  • Bronze: Bronze is sometimes used for bearings or bushings within universal joints. Bronze alloys provide good wear resistance, low friction, and the ability to withstand high temperatures. They are often employed in applications where self-lubricating properties and resistance to galling are required. Bronze bearings can be found in universal joints used in heavy machinery, marine equipment, or agricultural machinery.

It’s worth noting that the specific choice of materials may vary depending on the manufacturer, application requirements, and industry standards. Different combinations of materials may also be used for different components within a universal joint, such as the yokes, crosses, bearings, or seals, to optimize performance and durability.

In summary, universal joints are commonly constructed using materials such as steel, stainless steel, cast iron, aluminum, and bronze. The selection of materials depends on factors like strength, durability, wear resistance, corrosion resistance, weight considerations, and specific application requirements.

universal joint

How do you install a universal joint?

Installing a universal joint correctly is essential to ensure its proper functioning and longevity. Here are the general steps to guide you in the installation process:

  1. Prepare the universal joint: Before installation, inspect the universal joint for any damage or defects. Ensure that all the components, such as yokes, bearings, and cross, are in good condition. Clean the components if necessary and apply a suitable lubricant to ensure smooth operation.
  2. Align the shafts: Position the shafts that need to be connected by the universal joint. Align the shafts as closely as possible, ensuring that they are parallel and collinear. If precise alignment is challenging, universal joints can compensate for slight misalignments, but it is still preferable to have the shafts as aligned as possible.
  3. Insert the cross: Insert the cross-shaped center piece of the universal joint into one of the yokes. Ensure that the cross is aligned properly with the yoke and that the bearings are securely seated in the yoke bores.
  4. Attach the second yoke: Slide the second yoke onto the cross, aligning it with the opposite ends of the cross arms. Make sure the yoke is oriented in the correct phase with the first yoke, typically 90 degrees out of phase, allowing for angular displacement.
  5. Secure the yokes: Use the appropriate fastening method to secure the yokes to the shafts. This can include methods such as set screws, clamps, or retaining rings. Follow the manufacturer’s guidelines and torque specifications for the specific type of universal joint being installed.
  6. Check for smooth operation: After securing the yokes, rotate the connected shafts by hand to check for smooth operation and proper articulation. Ensure that the universal joint moves freely without binding or excessive play. If any issues are detected, double-check the alignment, lubrication, and fastening of the universal joint.
  7. Test under load: If applicable, test the universal joint under the expected load conditions of your application. Monitor its performance and check for any abnormal vibrations, noises, or excessive heat. If any issues arise, re-evaluate the installation and make necessary adjustments or consult with an expert.
  8. Maintenance and lubrication: Regularly inspect and maintain the universal joint as part of your overall system maintenance. Ensure that the joint remains properly lubricated according to the manufacturer’s recommendations. Lubrication helps reduce friction, wear, and heat generation, extending the life of the universal joint.

It’s important to note that the installation process may vary depending on the specific type and design of the universal joint, as well as the application requirements. Always refer to the manufacturer’s instructions and guidelines for the particular universal joint you are installing, as they may provide specific procedures and considerations.

China Standard IATF 16949 OEM Factory One-Stop Service Prototype/Drawing Customization Bespoke Machinery Part Industrial Components Truck Part Steering Knuckle Universal Joint  China Standard IATF 16949 OEM Factory One-Stop Service Prototype/Drawing Customization Bespoke Machinery Part Industrial Components Truck Part Steering Knuckle Universal Joint
editor by CX 2024-02-23

China Good quality Gut-20 Universal Joint OEM, 04371-36021, 04371-30041, 04371-36030, 04371-60030 for CZPT

Product Description

Manufacturer Auto Spare Parts Car Suspension parts Electrical parts Body parts Engine parts and Accessories for CHINAMFG Vios Yaris Corolla Fortuner Hilux CHINAMFG Hiace LandCruiser Coster 4Runner Highlander Camryetc.571160070,57110K080,571OK012,GUT12,GU1000,GUT12,GUT10,GUT13,GUT20
 

Product Description

A Universal joint, U-joint, Cross joint, or Cardan joint, is a joint or coupling in a rigid rod that allows the rod to ‘bend’ in any direction, and is commonly used in shafts that transmit rotary motion, is used for transmission systems of cars, buses, trucks, and tractors.
 

part name Universal joint
part number GUT-20,5711-36571,5711-36034,5711-36050,5711-60030
weight 0.76KG
car name DYNA,STOUT2000,LAND CRUISER,COASTER…
size 32x61x93mm
packing Details Snap Rings:4pcs,Grease Nipples:1pcs.
warranty 12 Months
place of Origin RuiAn WenZhou ZheJiang

Product Details:
Product: Universal Joint.
Hardness: HRC58-64.
Brand: LR or OEM service.
Packing: Plastic bag, color/white box, carton, wood pallet.
Sample policy: Free sample, freight collect.


our catalog:

 

Detailed Photos

other instructions
1>it is FOB HangZhou price . (also can send free to HangZhou HangZhou /ning bo ZheJiang and so on. warehouse  .)
2>the material is 20cr  good material , must not any complain from your customers. (also have 20Mn . 20cr Mn Ti )
3>our delivery time is 40days (with 20Gp container ) . very in time .
4> Can develop according to customer’s drawings or samples
5> OEM is available
6> Full range for the universal joint
7> Good quality and resonable price

 

Packaging & Shipping

the packing . Standard netural packing with carton.
Delivery detail: 30-45 working days,depend on the actual produce condition.

Company Profile

HangZhou Chuangbang Locomotive Parts Co., Ltd. is a manufacturer of cross shaft and three-pronged universal joint. The company now has mature production technology, testing equipment and set up R & D, mold development center, quality inspection, sales and other departments, greatly improving the productivity and product quality stability. After years of efforts, the company’s product quality and technology in the forefront of the domestic, and with its intimate after-sales service to win the trust of customers, but also won a good reputation for themselves. After years of hard work and struggle, the company has expanded its business to overseas markets, and has established mutually winning cooperative relations with customers in other foreign markets. As the company name indicates, we are running, innovating, we have been running, constantly innovating! But every time we run, the reason for innovation is because of you!If you need know us, please visit our website.

FAQ

Q1: What is the location of your company?
A1: Our company is located in the TangXia (RuiAn) City ,ZHangZhoug province,China.Welcome to visit our factory at anytime!
 
Q2: How does your factory do regarding quality control?
A2: Our standard QC system to control quality(TS16949 2016).
 
Q3: What is your delivery time?
A3: Usually within 30-40 days after the receipt of payment.Delivery time must depend on the actual produce condition.
 
Q4: What are your strengths?
A4: 1.We are the manufacturer,having competitive advantage in price.
 
2.A large part of money is put into advancing CNC equipments and product
R&D department annual,the performance of universal joint can be guaranteed.
 
3.About quality issues or follow-up after-sales service,we report directly to the boss.

 

Why Choose Us

* Favorable Price For You
* Good Reputation Among The Clients
* Smooth & Easy Cooperation
* Considerate and Responsive Customer Service
* Positive Customer Feedback
* On time and Safe Delivery
* Reliable Partner
* Widely Exported To Lots Of Countries
* Good Quality Guaranteed

Advantages

1) With abundant products in stock, it can be shipped in the same day as order placed.

2) 1 piece price is also the wholesale price. Shipped directly from the factory avoid middlemen to increase prices.
 

Notice:

*Original equipment manufacturer names, Part number and descriptions are quoted for reference purposes only

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Color: Silver
Certification: ISO
Structure: Double
Material: Stainless Steel
Type: Retractable
Customization:
Available

|

Customized Request

universal joint

How do you calculate the torque capacity of a universal joint?

Calculating the torque capacity of a universal joint involves considering various factors such as the joint’s design, material properties, and operating conditions. Here’s a detailed explanation:

The torque capacity of a universal joint is determined by several key parameters:

  1. Maximum Allowable Angle: The maximum allowable angle, often referred to as the “operating angle,” is the maximum angle at which the universal joint can operate without compromising its performance and integrity. It is typically specified by the manufacturer and depends on the joint’s design and construction.
  2. Design Factor: The design factor accounts for safety margins and variations in load conditions. It is a dimensionless factor typically ranging from 1.5 to 2.0, and it is multiplied by the calculated torque to ensure the joint can handle occasional peak loads or unexpected variations.
  3. Material Properties: The material properties of the universal joint’s components, such as the yokes, cross, and bearings, play a crucial role in determining its torque capacity. Factors such as the yield strength, ultimate tensile strength, and fatigue strength of the materials are considered in the calculations.
  4. Equivalent Torque: The equivalent torque is the torque value that represents the combined effect of the applied torque and the misalignment angle. It is calculated by multiplying the applied torque by a factor that accounts for the misalignment angle and the joint’s design characteristics. This factor is often provided in manufacturer specifications or can be determined through empirical testing.
  5. Torque Calculation: To calculate the torque capacity of a universal joint, the following formula can be used:
    Torque Capacity = (Equivalent Torque × Design Factor) / Safety Factor

    The safety factor is an additional multiplier applied to ensure a conservative and reliable design. The value of the safety factor depends on the specific application and industry standards but is typically in the range of 1.5 to 2.0.

It is important to note that calculating the torque capacity of a universal joint involves complex engineering considerations, and it is recommended to consult manufacturer specifications, guidelines, or engineering experts with experience in universal joint design for accurate and reliable calculations.

In summary, the torque capacity of a universal joint is calculated by considering the maximum allowable angle, applying a design factor, accounting for material properties, determining the equivalent torque, and applying a safety factor. Proper torque capacity calculations ensure that the universal joint can reliably handle the expected loads and misalignments in its intended application.

universal joint

How do you prevent backlash and vibration issues in a universal joint?

Preventing backlash and vibration issues in a universal joint involves various considerations and measures. Here are some approaches to minimize backlash and mitigate vibration problems:

  • Precision manufacturing: High-quality, precision-manufactured universal joints can help reduce backlash and vibration. Accurate machining and assembly processes ensure tight tolerances and minimize clearances between components, resulting in improved performance and reduced backlash.
  • Proper lubrication: Adequate lubrication is essential to minimize friction and wear, which can contribute to backlash and vibration. Using the recommended lubricant and following the manufacturer’s guidelines for lubrication intervals help ensure smooth operation and reduce backlash in the joint.
  • Alignment: Proper alignment between the input and output shafts is crucial for minimizing backlash and vibration. Aligning the shafts within the manufacturer’s specified tolerances ensures that the joint operates within its designed parameters, reducing stress and potential backlash issues.
  • Balance: Balancing the rotating components, such as yokes and crosses, helps minimize vibration. Imbalances can cause uneven forces and induce vibrations in the joint and the connected system. Balancing techniques, such as adding counterweights or using precision balancing equipment, ensure smoother operation and minimize vibration-related problems.
  • Vibration damping: Applying vibration damping techniques can help mitigate vibration issues. This may involve using vibration-absorbing materials, such as rubber or elastomeric elements, at appropriate locations to absorb and dissipate vibrations. Dampening vibrations can reduce the transmission of unwanted motion and minimize the potential for backlash.
  • Regular maintenance: Routine inspection and maintenance of the universal joint are essential to prevent backlash and vibration problems. This includes checking for wear, proper lubrication, and addressing any signs of misalignment or damage. Timely maintenance helps identify and rectify potential issues before they escalate and affect the performance and reliability of the joint.
  • Appropriate joint selection: Choosing the right type of universal joint for the specific application is crucial. Different joint designs, such as single joint, double joint, constant velocity (CV) joint, or Cardan joint, have varying characteristics and capabilities. Assessing the requirements of the system and selecting a joint that suits the application can help minimize backlash and vibration issues.

Implementing these measures and considering the specific operating conditions and requirements of the system can help prevent or minimize backlash and vibration issues in a universal joint. It is important to consult the manufacturer’s guidelines and recommendations for proper installation, operation, and maintenance of the universal joint to ensure optimal performance and longevity.

universal joint

How do you choose the right size universal joint for your application?

Choosing the right size universal joint for a specific application involves considering several factors to ensure proper function and performance. Here are key steps to guide you in selecting the appropriate size:

  1. Identify the application requirements: Determine the specific requirements of your application, such as the maximum torque, speed, angular misalignment, and operating conditions. Understanding these parameters will help in selecting a universal joint that can handle the demands of your application.
  2. Shaft sizes and connection type: Measure the diameter and type of the shafts that need to be connected by the universal joint. Ensure that the joint you choose has compatible connection options for the shafts, such as keyways, splines, or smooth bores.
  3. Load capacity: Consider the load capacity or torque rating of the universal joint. It should be capable of handling the maximum torque expected in your application without exceeding its rated capacity. Refer to the manufacturer’s specifications and guidelines for load ratings.
  4. Operating speed: Take into account the operating speed of your application. Universal joints have speed limitations, and exceeding these limits can result in premature wear, heat generation, and failure. Ensure that the selected joint can handle the required rotational speed without compromising performance.
  5. Angular misalignment: Determine the maximum angular misalignment between the shafts in your application. Different types of universal joints have varying degrees of angular misalignment capabilities. Choose a joint that can accommodate the required misalignment while maintaining smooth operation.
  6. Environmental conditions: Assess the environmental conditions in which the universal joint will operate. Consider factors such as temperature, humidity, exposure to chemicals or contaminants, and the presence of vibrations or shocks. Select a joint that is designed to withstand and perform reliably in the specific environmental conditions of your application.
  7. Consult manufacturer guidelines: Refer to the manufacturer’s guidelines, catalog, or technical documentation for the universal joint you are considering. Manufacturers often provide detailed information on the selection criteria, including sizing charts, application guidelines, and compatibility tables. Following the manufacturer’s recommendations will ensure proper sizing and compatibility.

By following these steps and considering the specific requirements of your application, you can choose the right size universal joint that will provide reliable and efficient operation in your system.

China Good quality Gut-20 Universal Joint OEM, 04371-36021, 04371-30041, 04371-36030, 04371-60030 for CZPT  China Good quality Gut-20 Universal Joint OEM, 04371-36021, 04371-30041, 04371-36030, 04371-60030 for CZPT
editor by CX 2024-02-22

China Good quality Wholesale Metal Universal Joint Professional Manufacture Universal Joint Parts Customized Lighting Joint

Product Description

 

Product Description

 

Material Aluminium Alloy,Carbon Steel,Stainless steel,Copper,Brass,Nylon,Plastic(Customized Material)
Producing Equipment 3 Axis,4 Axis,5 Axis CNC Machines,Automatic Lathe Machines,Stamping Machines,CNC Milling machines,CNC Turning Machines,Turning Milling Compound Machines,Grinding Machines,Rolling Machines,Laser Machines.
Surface Treatment Anodizing,Polishing,Electroplating,Heat Treatment,Spray Paint,Sand Blasting.
Testing Equipment Salt Spray Test, Hardness Tester, Coating Thickness Tester, Two Dimensions Measuring Instrument.
Quality Testing 100% Quality Inspection Before Shipment.
Lead Time Generally, The Delivery Date Is 7-15 Days,Delivery Time of Bulk Order Is More Than 15 days.
Tolerance and Roughness Size Tolerance:+/-0.005 – 0.01mm,Roughness: Ra0.2 – Ra3.2 (Custom Size Requirements)
Cargo Shipment Express(DHL,Fedex,UPS, TNT ),Air shipment+Local Express Delivery,Ocean Shipment.
Main Markets America, Europe, Australia, Asia.
Payment Type T/T, L/C, Paypal,Western Union,Others.

Packaging & Shipping

Company Profile

HangZhou Fuyouda Technology Co., Ltd. Was established in city known as the “world factory”-HangZhou. We are factory and have many kinds of machine, such as 5-axis CNC machines, lath machines, turning milling compound machines. After 10 years of R&D, production and sales, we have 80% market share in the field of 3D printer parts in China and we are specializing in CNC machinig for 10 years. We are committed to creating a work and production environment that is above the industry average. We adopt scientific production management methods to improve production efficiency and reduce production costs. Please believe and choose us! We adhere to the management principles of “Quality First, Customer first and Credit-based” since the establishment of the company and always do our best to satisfy potential needs of our customers. Our company is sincerely willing to cooperate with enterprises from all over the world in order to realize a CHINAMFG situation since the trend of economic globalization has developed with anirresistible force.

Our Advantages

FAQ

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machinery Accessory
Standard: GB, EN
Surface Treatment: Electroplating
Production Type: Mass Production
Machining Method: CNC Turning
Material: Steel, Stainless Steel
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

universal joint

Can universal joints be used in both horizontal and vertical orientations?

Yes, universal joints can be used in both horizontal and vertical orientations. Here’s a detailed explanation:

Universal joints are mechanical devices designed to transmit rotary motion between two shafts that are not in a straight line alignment. They consist of a cross-shaped or H-shaped yoke with bearings at each end that connect to the shafts. The design of universal joints allows them to accommodate angular misalignment between the shafts, making them suitable for various applications, including both horizontal and vertical orientations.

When used in a horizontal orientation, universal joints can transmit rotational motion between shafts that are positioned at different angles or offsets. They are commonly found in drivetrain systems of vehicles, where they transfer power from the engine to the wheels, even when the drivetrain components are not perfectly aligned. In this configuration, universal joints can effectively handle the torque requirements and misalignment caused by uneven terrain, suspension movement, or steering angles.

In a vertical orientation, universal joints can also be utilized to transfer rotational motion between shafts that are positioned vertically. This arrangement is often seen in applications such as industrial equipment, machinery, or agricultural implements. For example, in a vertical power transmission system, a universal joint can be used to connect a vertical driving shaft to a vertical driven shaft, enabling power transfer and accommodating any angular misalignment that may occur due to variations in shaft positions or vibrations.

It’s important to note that the specific design and selection of universal joints for different orientations should consider factors such as the torque requirements, operating conditions, and the manufacturer’s specifications. The orientation of the universal joint may affect factors such as lubrication, load-bearing capacity, and the need for additional support or stabilization mechanisms.

In summary, universal joints can be used in both horizontal and vertical orientations. Their ability to accommodate angular misalignment makes them versatile components for transmitting rotary motion between shafts that are not in a straight line alignment, regardless of the orientation.

universal joint

What is the lifespan of a typical universal joint?

The lifespan of a typical universal joint can vary depending on several factors. Here’s a detailed explanation:

The lifespan of a universal joint depends on various factors, including the quality of the joint, operating conditions, maintenance practices, and the specific application. While it is challenging to provide an exact lifespan, considering the following factors can help estimate the longevity of a universal joint:

  • Quality and Materials: The quality of the universal joint and the materials used in its construction play a significant role in determining its lifespan. High-quality joints made from durable materials, such as alloy steels or stainless steels, tend to have longer lifespans compared to lower-quality or less robust joints made from inferior materials.
  • Operating Conditions: The operating conditions in which the universal joint is used can significantly impact its lifespan. Factors such as torque levels, rotational speed, angular misalignment, vibration, temperature, and exposure to contaminants can all affect the joint’s performance and longevity. Operating the joint within its specified limits, avoiding excessive or extreme conditions, and providing proper maintenance can help extend its lifespan.
  • Maintenance Practices: Regular maintenance is essential for maximizing the lifespan of a universal joint. Proper lubrication, periodic inspection for wear or damage, and timely replacement of worn components can help prevent premature failure. Adhering to the manufacturer’s recommended maintenance schedule and guidelines is crucial to ensure optimal performance and longevity.
  • Application Requirements: The specific application requirements and demands placed on the universal joint influence its lifespan. Heavy-duty applications with high torque, frequent load fluctuations, or extreme operating conditions may result in increased stress and wear on the joint, potentially shortening its lifespan. Selecting a universal joint that is specifically designed and rated for the application’s requirements can help ensure a longer lifespan.

Given these factors, it is challenging to provide a precise lifespan for a typical universal joint. In some applications with proper maintenance and suitable operating conditions, a universal joint can last for several years. However, in demanding or harsh operating environments, or if subjected to excessive loads or misalignment, the lifespan of the joint may be shorter, requiring more frequent replacements.

It’s important to consult the manufacturer’s guidelines and recommendations for the specific universal joint being used, as they can provide more accurate information regarding its expected lifespan under different operating conditions. Additionally, monitoring the joint’s performance, conducting regular inspections, and addressing any signs of wear or deterioration can help identify the need for replacement and ensure safe and reliable operation.

universal joint

Can you explain the purpose of a universal joint in a drive shaft?

In a drive shaft, a universal joint serves a crucial purpose in transmitting rotational motion between the engine or power source and the driven wheels or other components. Let’s delve into the purpose of a universal joint in a drive shaft:

A drive shaft is a mechanical component that transfers torque from the engine or power source to the wheels or other driven components in a vehicle or machinery. It is typically used in rear-wheel drive and four-wheel drive systems. The drive shaft connects the transmission output shaft to the differential or axle assembly, allowing the wheels to receive power and propel the vehicle forward.

The purpose of a universal joint in a drive shaft is to accommodate the misalignment and changes in angles between the transmission and the differential or axle assembly. Misalignment can occur due to various factors, including the vehicle’s suspension system, the position of the engine, and the movement of the wheels. Without a flexible coupling mechanism, misalignment would cause binding, vibration, and potential damage to the drive shaft and other drivetrain components.

Universal joints provide the necessary flexibility and articulation to compensate for misalignment and changes in angles. They allow the drive shaft to bend and rotate at varying angles while transmitting torque from the transmission to the differential. The universal joint allows the drive shaft to operate smoothly and efficiently, even when the vehicle is in motion and the suspension system causes changes in the relative positions of the transmission and the differential.

When the engine or power source rotates the drive shaft, the universal joint allows angular displacement between the transmission and the differential. As the drive shaft bends and changes angles, the universal joint accommodates these movements, ensuring continuous torque transmission without placing excessive stress on the drivetrain components.

The universal joint consists of a cross-shaped or H-shaped yoke with bearings at the ends of each arm. These bearings allow for smooth rotation and minimize friction between the yoke and the drive shaft. The design of the universal joint enables it to flex and articulate, compensating for misalignment and changes in angles without affecting the rotation of the drive shaft.

Overall, the purpose of a universal joint in a drive shaft is to provide the necessary flexibility and articulation to accommodate misalignment and changes in angles. By allowing the drive shaft to bend and rotate at varying angles, the universal joint ensures smooth and efficient torque transmission between the engine and the driven wheels or components, contributing to the proper functioning of the vehicle or machinery.

China Good quality Wholesale Metal Universal Joint Professional Manufacture Universal Joint Parts Customized Lighting Joint  China Good quality Wholesale Metal Universal Joint Professional Manufacture Universal Joint Parts Customized Lighting Joint
editor by CX 2024-02-20

China OEM Gum-77 Universal Joints Bearings Gum77 U Cross Joint Bearing Kits 27X65.3mm Manufacturer

Product Description

Type

Universal Joint

Brand

Huihai

Car Model

For MITSUBISHI  GMB NO. GUM77  KOYO.NO. M2578A  MATSUBA NO. UJ617

OE NO.

ST-0008
Parameters

27×81.75/20CR

Condition

100% new

Warranty

12 month

The Universal Joint is a part of variable Angle power transmission, which is used to change the direction of the transmission axis. It is the “joint” part of the universal transmission device of the automobile drive system. The combination of universal joint and transmission shaft is called universal joint transmission device. On the front-engine rear-wheel drive vehicle, the universal joint transmission device is installed between the transmission output shaft and the drive axle main reducer input shaft; The front-engine front-wheel drive vehicle omits the drive shaft, and the universal joint is installed between the front axle axle and the wheel, which is responsible for both driving and steering.

 

 

 

 

 

                                               Q1.What is your MOQ?
                                              A: We accept lower quantity for your trial order.

                                             Q2. How long is the production lead time?
                                              A: For some item we keep some stock that can be deliveried in 2 weeks.

                                            Q3.What is your payment term?
                                              A: Discussed! T/T / L/C /Paypal etc.

                                           Q4.Can I customized my own Brand ?
                                              A: Yes, we can do however you need to reach certain quantity for each item

                                            Q5. What is a package?
                                              A: Neutral packaging or customer packaging.

                                             Q6. Can you help with the delivery of the goods?
                                             A:  Yes. We can help deliver goods through our customer freight forwarders or our freight forwarders.

                                             Q7. Which port does our company supply?
                                             A:  Usually in HangZhou Port. The port specified by the customer is acceptable.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: One Year
Warranty: One Year Warranty
Condition: New
Color: Silver
Certification: ISO
Structure: Single

universal joint

How do you retrofit an existing mechanical system with a universal joint?

Retrofitting an existing mechanical system with a universal joint involves modifying or adding components to integrate the universal joint into the system. Here’s a detailed explanation of the retrofitting process:

To retrofit an existing mechanical system with a universal joint, follow these steps:

  1. Evaluate the System: Begin by thoroughly assessing the existing mechanical system. Understand its design, components, and the type of motion it requires. Identify the specific area where the universal joint needs to be incorporated and determine the necessary modifications or additions.
  2. Design Considerations: Take into account the operating conditions, load requirements, and available space in the system. Consider the size, type, and specifications of the universal joint that will best suit the retrofit. This includes selecting the appropriate joint size, torque capacity, operating angles, and any additional features required for compatibility with the system.
  3. Measurements and Alignment: Accurately measure the dimensions and alignment of the existing system, particularly the shafts involved in the retrofit. Ensure that the required modifications or additions align properly with the system’s existing components. Precise measurements are crucial for a successful retrofit.
  4. Modify Existing Components: In some cases, it may be necessary to modify certain components of the existing system to accommodate the universal joint. This could involve machining or welding to create attachment points or adjust the dimensions of the system’s components to ensure proper fitment of the universal joint and its associated parts.
  5. Integrate the Universal Joint: Install the universal joint into the retrofit area according to the system’s requirements and design considerations. This involves securely attaching the universal joint to the modified or existing components using appropriate fasteners or connection methods as specified by the manufacturer. Ensure that the joint is properly aligned with the shafts to facilitate smooth and efficient motion transfer.
  6. Supporting Components: Depending on the specific retrofit requirements, additional supporting components may be needed. This can include yokes, bearings, shaft couplings, or guards to ensure proper functioning and protection of the universal joint assembly and the overall system.
  7. Testing and Adjustment: Once the retrofit is complete, thoroughly test the system to ensure that the universal joint operates smoothly and meets the desired performance requirements. Make any necessary adjustments to align the system and optimize its functionality. It is essential to verify that the retrofit does not introduce any adverse effects or compromise the overall operation of the mechanical system.

Retrofitting an existing mechanical system with a universal joint requires careful planning, precise measurements, and proper integration of the joint into the system. By following these steps and considering the design considerations and compatibility, it is possible to successfully incorporate a universal joint into an existing mechanical system and enhance its functionality and performance.

universal joint

How does a universal joint affect the overall efficiency of a system?

A universal joint can have an impact on the overall efficiency of a system in several ways. The efficiency of a system refers to its ability to convert input power into useful output power while minimizing losses. Here are some factors that can influence the efficiency of a system when using a universal joint:

  • Friction and energy losses: Universal joints introduce friction between their components, such as the cross, bearings, and yokes. This friction results in energy losses in the form of heat, which reduces the overall efficiency of the system. Proper lubrication and maintenance of the universal joint can help minimize friction and associated energy losses.
  • Angular misalignment: Universal joints are commonly used to transmit torque between non-aligned or angularly displaced shafts. However, when the input and output shafts are misaligned, it can lead to increased angular deflection, resulting in energy losses due to increased friction and wear. The greater the misalignment, the higher the energy losses, which can affect the overall efficiency of the system.
  • Backlash and play: Universal joints can have inherent backlash and play, which refers to the amount of rotational movement that occurs before the joint begins to transmit torque. Backlash and play can lead to decreased efficiency in applications that require precise positioning or motion control. The presence of backlash can cause inefficiencies, especially when reversing rotational direction or during rapid changes in torque direction.
  • Mechanical vibrations: Universal joints can generate mechanical vibrations during operation. These vibrations can result from factors such as angular misalignment, imbalance, or variations in joint geometry. Mechanical vibrations not only reduce the efficiency of the system but can also contribute to increased wear, fatigue, and potential failure of the joint or other system components. Vibration damping techniques, proper balancing, and maintenance can help mitigate the negative effects of vibrations on system efficiency.
  • Operating speed: The operating speed of a system can also impact the efficiency of a universal joint. At high rotational speeds, the limitations of the joint’s design, such as imbalance, increased friction, or decreased precision, can become more pronounced, leading to reduced efficiency. It’s important to consider the specific speed capabilities and limitations of the universal joint to ensure optimal system efficiency.

Overall, while universal joints are widely used and provide flexibility in transmitting torque between non-aligned shafts, their design characteristics and operational considerations can affect the efficiency of a system. Proper maintenance, lubrication, alignment, and consideration of factors such as misalignment, backlash, vibrations, and operating speed contribute to maximizing the efficiency of the system when utilizing a universal joint.

universal joint

What are the potential limitations or drawbacks of using universal joints?

While universal joints offer several advantages in transmitting torque between non-aligned or angularly displaced shafts, they also have some limitations and drawbacks to consider. Here are some potential limitations of using universal joints:

  • Angular limitations: Universal joints have specific angular limits within which they can operate efficiently. If the angle between the input and output shafts exceeds these limits, it can lead to increased wear, vibration, and decreased power transmission efficiency. Operating a universal joint at extreme angles or near its angular limits can result in premature failure or reduced service life.
  • Backlash and play: Universal joints can have inherent backlash and play due to the design and clearance between the components. This can result in a loss of precision in torque transmission, especially in applications that require accurate positioning or minimal rotational play.
  • Maintenance and lubrication: Universal joints require regular maintenance and proper lubrication to ensure their optimal performance and longevity. Failing to adhere to the recommended lubrication intervals or using inadequate lubricants can lead to increased friction, wear, and potential joint failure.
  • Limited misalignment compensation: While universal joints can accommodate some misalignment between the input and output shafts, they have limitations in compensating for large misalignments. Excessive misalignment can cause increased stress, wear, and potential binding or seizure of the joint.
  • Non-constant velocity: Standard universal joints, also known as Cardan joints, do not provide constant velocity output. As the joint rotates, the output shaft speed fluctuates due to the changing angular velocity caused by the joint’s design. Applications that require constant velocity output may necessitate the use of alternative joint types, such as constant velocity (CV) joints.
  • Limitations in high-speed applications: Universal joints may not be suitable for high-speed applications due to the potential for vibration, imbalance, and increased stress on the joint components. At high rotational speeds, the joint’s limitations in balance and precision can become more pronounced, leading to reduced performance and potential failure.
  • Space and weight considerations: Universal joints require space to accommodate their design, including the yokes, cross, and bearings. In compact or weight-conscious applications, the size and weight of the universal joint may pose challenges, requiring careful design considerations and trade-offs.

It’s important to evaluate these limitations and drawbacks in the context of the specific application and system requirements. In some cases, alternative power transmission solutions, such as flexible couplings, CV joints, gearboxes, or direct drives, may be more suitable depending on the desired performance, efficiency, and operating conditions.

China OEM Gum-77 Universal Joints Bearings Gum77 U Cross Joint Bearing Kits 27X65.3mm Manufacturer  China OEM Gum-77 Universal Joints Bearings Gum77 U Cross Joint Bearing Kits 27X65.3mm Manufacturer
editor by CX 2024-02-19

China Hot selling Gumz-7 Universal Joint OEM 0259-25-060 for Mazda

Product Description

Manufacturer Auto Spare Parts Car Suspension parts Electrical parts Body parts Engine parts and Accessories for CHINAMFG Vios Yaris Corolla Fortuner Hilux CHINAMFG Hiace LandCruiser Coster 4Runner Highlander Camryetc.571160070,57110K080,571OK012,GUT12,GU1000,GUT12,GUT10,GUT13,GUT20,GUT25,GUT29,GUT30,GUMZ2,GUMZ3,GUMZ4
GUMZ5,GUMZ1,GUMZ6,GUMZ7

Product Description

A Universal joint, U-joint, Cross joint, or Cardan joint, is a joint or coupling in a rigid rod that allows the rod to ‘bend’ in any direction, and is commonly used in shafts that transmit rotary motion, is used for transmission systems of cars, buses, trucks, and tractors.
 

part name Universal joint
part number GUMZ-7,5719-25-060
weight 0.35KG
car name FAMLA1000,FAMILIA1200
size 25x40x63.8MM
packing Details Snap Rings:4pcs,Grease Nipples:1pcs.
warranty 12 Months
place of Origin RuiAn WenZhou ZheJiang

Product Details:
Product: Universal Joint.
Hardness: HRC58-64.
Brand: LR or OEM service.
Packing: Plastic bag, color/white box, carton, wood pallet.
Sample policy: Free sample, freight collect.


our catalog:

 

Detailed Photos

other instructions
1>it is FOB HangZhou price . (also can send free to HangZhou HangZhou /ning bo ZheJiang and so on. warehouse  .)
2>the material is 20cr  good material , must not any complain from your customers. (also have 20Mn . 20cr Mn Ti )
3>our delivery time is 40days (with 20Gp container ) . very in time .
4> Can develop according to customer’s drawings or samples
5> OEM is available
6> Full range for the universal joint
7> Good quality and resonable price

 

Packaging & Shipping

the packing . Standard netural packing with carton.
Delivery detail: 30-45 working days,depend on the actual produce condition.

Company Profile

HangZhou Chuangbang Locomotive Parts Co., Ltd. is a manufacturer of cross shaft and three-pronged universal joint. The company now has mature production technology, testing equipment and set up R & D, mold development center, quality inspection, sales and other departments, greatly improving the productivity and product quality stability. After years of efforts, the company’s product quality and technology in the forefront of the domestic, and with its intimate after-sales service to win the trust of customers, but also won a good reputation for themselves. After years of hard work and struggle, the company has expanded its business to overseas markets, and has established mutually winning cooperative relations with customers in other foreign markets. As the company name indicates, we are running, innovating, we have been running, constantly innovating! But every time we run, the reason for innovation is because of you!If you need know us, please visit our website.

FAQ

Q1: What is the location of your company?
A1: Our company is located in the TangXia (RuiAn) City ,ZHangZhoug province,China.Welcome to visit our factory at anytime!
 
Q2: How does your factory do regarding quality control?
A2: Our standard QC system to control quality(TS16949 2016).
 
Q3: What is your delivery time?
A3: Usually within 30-40 days after the receipt of payment.Delivery time must depend on the actual produce condition.
 
Q4: What are your strengths?
A4: 1.We are the manufacturer,having competitive advantage in price.
 
2.A large part of money is put into advancing CNC equipments and product
R&D department annual,the performance of universal joint can be guaranteed.
 
3.About quality issues or follow-up after-sales service,we report directly to the boss.

 

Why Choose Us

* Favorable Price For You
* Good Reputation Among The Clients
* Smooth & Easy Cooperation
* Considerate and Responsive Customer Service
* Positive Customer Feedback
* On time and Safe Delivery
* Reliable Partner
* Widely Exported To Lots Of Countries
* Good Quality Guaranteed

Advantages

1) With abundant products in stock, it can be shipped in the same day as order placed.

2) 1 piece price is also the wholesale price. Shipped directly from the factory avoid middlemen to increase prices.
 

Notice:

*Original equipment manufacturer names, Part number and descriptions are quoted for reference purposes only

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Color: Silver
Certification: ISO
Structure: Double
Material: Stainless Steel
Type: Retractable
Customization:
Available

|

Customized Request

universal joint

How do you properly maintain and lubricate a universal joint?

Maintaining and lubricating a universal joint is essential to ensure its smooth operation, extend its lifespan, and prevent premature failure. Here’s a detailed explanation of the proper maintenance and lubrication process:

To properly maintain and lubricate a universal joint, follow these steps:

  1. Consult Manufacturer Guidelines: Refer to the manufacturer’s guidelines and recommendations specific to the universal joint being used. Manufacturers often provide detailed instructions regarding maintenance intervals, lubrication types, and procedures. Familiarize yourself with these guidelines before performing any maintenance or lubrication.
  2. Inspect the Joint: Regularly inspect the universal joint for signs of wear, damage, or misalignment. Look for indications of excessive play, corrosion, fatigue, or any other abnormalities. Inspecting the joint allows you to identify potential issues before they escalate. If any problems are detected, address them promptly to prevent further damage or failure.
  3. Clean the Joint: Before applying lubrication, clean the universal joint to remove any dirt, debris, or old lubricant that may have accumulated. Use a suitable cleaning agent or solvent recommended by the manufacturer. It’s important to have a clean surface for effective lubrication.
  4. Select the Proper Lubricant: Choose the appropriate lubricant specified by the manufacturer. The type of lubricant required may vary based on factors such as the universal joint design, operating conditions, and temperature range. Common lubricants used for universal joints include grease or oil. Ensure that the selected lubricant is compatible with the joint’s materials and operating environment.
  5. Apply Lubricant: Apply the lubricant to the universal joint according to the manufacturer’s instructions. Pay attention to the specific lubrication points, such as the bearing caps, needle bearings, or trunnions. Use the recommended amount of lubricant to ensure proper coverage and distribution. Avoid over-lubrication as it can lead to excessive heat generation and increased friction.
  6. Operate the Joint: After lubrication, operate the universal joint to distribute the lubricant evenly and ensure it reaches all necessary components. Rotate or move the joint through its full range of motion several times to facilitate the spreading of the lubricant and to verify smooth operation. This step helps to eliminate any air pockets and ensures that all surfaces are adequately lubricated.
  7. Monitor and Reapply: Regularly monitor the universal joint’s performance and lubrication condition. Periodically check for any signs of lubricant breakdown, contamination, or leakage. Depending on the manufacturer’s recommendations, reapply lubrication at specified intervals or when necessary to maintain optimal operation. Factors such as operating conditions, load, and temperature may influence the frequency of lubrication.
  8. Keep Records: Maintain a record of the universal joint’s maintenance activities, including lubrication dates, lubricant type, and any observations made during inspections. These records can help establish a maintenance schedule, track the joint’s performance over time, and serve as a reference for future maintenance or troubleshooting.

By following these steps and adhering to the manufacturer’s guidelines, you can properly maintain and lubricate a universal joint, promoting its longevity, reliability, and optimal performance.

universal joint

How do you calculate the operating angles of a universal joint?

Calculating the operating angles of a universal joint involves measuring the angular displacement between the input and output shafts. Here’s a detailed explanation:

To calculate the operating angles of a universal joint, you need to measure the angles at which the input and output shafts are misaligned. The operating angles are typically expressed as the angles between the axes of the two shafts.

Here’s a step-by-step process for calculating the operating angles:

  1. Identify the input shaft and the output shaft of the universal joint.
  2. Measure and record the angle of the input shaft relative to a reference plane or axis. This can be done using a protractor, angle finder, or other measuring tools. The reference plane is typically a fixed surface or a known axis.
  3. Measure and record the angle of the output shaft relative to the same reference plane or axis.
  4. Calculate the operating angles by finding the difference between the input and output shaft angles. Depending on the arrangement of the universal joint, there may be two operating angles: one for the joint at the input side and another for the joint at the output side.

It’s important to note that the specific method of measuring and calculating the operating angles may vary depending on the design and configuration of the universal joint. Some universal joints have built-in methods for measuring the operating angles, such as markings or indicators on the joint itself.

Additionally, it’s crucial to consider the range of acceptable operating angles specified by the manufacturer. Operating a universal joint beyond its recommended angles can lead to increased wear, reduced lifespan, and potential failure.

In summary, calculating the operating angles of a universal joint involves measuring the angular displacement between the input and output shafts. By measuring the angles and finding the difference between them, you can determine the operating angles of the universal joint.

universal joint

What are the benefits of using a universal joint in a mechanical system?

Using a universal joint in a mechanical system offers several benefits that contribute to the efficient and reliable operation of the system. Here are some of the key advantages:

  • Misalignment compensation: One of the primary benefits of a universal joint is its ability to compensate for misalignment between rotating shafts. Universal joints can effectively transmit rotary motion between shafts that are not perfectly aligned, allowing for flexibility in system design and assembly. This flexibility accommodates various installation constraints and helps to minimize stress and wear on components.
  • Angular motion transmission: Universal joints enable the transmission of angular motion between shafts that are not parallel or collinear. They can transfer rotational movement even when the shafts are at different angles to each other. This capability is particularly useful in applications where the shafts need to be connected at non-linear or offset angles, providing versatility and enabling complex mechanical systems.
  • Torque transmission: Universal joints are capable of transmitting torque between shafts efficiently. They allow for the transfer of power from one shaft to another without a direct and rigid connection. This feature is especially important in applications where there may be slight misalignment or movement between the shafts due to factors like suspension systems, articulation, or vibration.
  • Reduced vibration and shock absorption: Universal joints can help dampen vibration andshocks in a mechanical system. They absorb and distribute the impact forces caused by uneven movement or external disturbances, reducing the transmission of vibrations to other parts of the system. This feature is particularly beneficial in applications where smooth operation and reduced wear and tear are essential, such as automotive drivelines or industrial machinery.
  • Constant velocity transmission: Certain types of universal joints, such as double joints or constant velocity joints, provide constant velocity transmission. These joints eliminate speed variations and maintain a consistent rotational speed even when the input and output shafts are at different angles. Constant velocity transmission is crucial in applications where precise and uniform motion is required, such as automotive steering systems or robotics.
  • Flexibility and articulation: Universal joints offer flexibility and articulation, allowing for movement and rotation in multiple directions. They can accommodate changes in the orientation and position of connected shafts, providing mechanical systems with the ability to adapt to dynamic conditions. This flexibility is particularly advantageous in applications involving moving parts, such as suspension systems, robotic arms, or machinery with articulating components.
  • Compact design: Universal joints are relatively compact in size, making them suitable for applications with space constraints. Their compact design allows for efficient integration into mechanical systems without occupying excessive space. This feature is valuable in various industries, including automotive, aerospace, and robotics, where optimizing space utilization is crucial.
  • Reliability and durability: Universal joints are designed to be durable and reliable, with the ability to withstand high loads, torque, and operating conditions. They are constructed from robust materials and undergo rigorous testing to ensure long-lasting performance. This reliability makes them suitable for demanding applications in industries such as automotive, manufacturing, agriculture, and more.

The benefits of using a universal joint in a mechanical system contribute to improved functionality, increased efficiency, and extended component lifespan. By enabling misalignment compensation, angular motion transmission, torque transfer, vibration reduction, constant velocity transmission, flexibility, and compact design, universal joints enhance the overall performance and reliability of mechanical systems.

China Hot selling Gumz-7 Universal Joint OEM 0259-25-060 for Mazda  China Hot selling Gumz-7 Universal Joint OEM 0259-25-060 for Mazda
editor by CX 2024-02-18

China Custom Wuxi CZPT Brand Cardan Shaft Spare Parts Universal Joint

Product Description

HangZhou Xihu (West Lake) Dis. Brand Cardan Shaft Spare Parts Universal Joint 

Brief Introduction

Processing flow

                                                                                                                                                                                                                                                                            
Quality Control                                                                                                                                                                                               

       
      

               
 

Packaging & Delivery

Packaging details:Standard plywood case

Delivery detail: 3-15 working days,depend on the actual produce condition

 

FAQ

Q1: What is the location of your company?

A1: Our company is located in the HangZhou City ,ZheJiang ,China.Welcome to visit our factory at anytime!

 

Q2: How does your factory do regarding quality control?

A2: Our standard QC system to control quality.

 

Q3: What is your delivery time?

A3: Usually within 20 days after the receipt of payment.Delivery time must depend on the actual produce condition.

 

Q4: What are your strengths?

A4: 1.We are the manufacturer,having competitive advantage in price.

 

2.A large part of money is put into advancing CNC equipments and product

R&D department annual,the performance of cardan shaft can be guaranteed.

 

3.About quality issues or follow-up after-sales service,we report directly to the boss.

Specification

There is no uniform standard for the specifications of cross assemblies. Please contact us directly for confirmation.

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Color: Silver
Certification: ISO, BV
Structure: Cross
Material: Forging
Type: Cross
Customization:
Available

|

Customized Request

universal joint

Can universal joints be used in aerospace and aviation applications?

Yes, universal joints can be used in aerospace and aviation applications, albeit their usage is limited and specific to certain systems. Here’s a detailed explanation:

Aerospace and aviation industries often require precise and reliable mechanical systems to ensure the safe and efficient operation of various components and subsystems. While universal joints are widely used in many industries, their application in aerospace and aviation is more limited due to the stringent requirements and specific conditions of these fields.

Here are some key points to consider regarding the use of universal joints in aerospace and aviation applications:

  1. Control Systems: Universal joints can be employed in control systems within aircraft and spacecraft. These control systems involve the transmission of motion and rotation between different components or surfaces. Universal joints can provide flexibility and enable the adjustment of control surfaces such as rudders, ailerons, or flaps, allowing for precise control of the aircraft’s movement.
  2. Instrumentation and Testing: Universal joints can be utilized in instrumentation and testing equipment used in aerospace and aviation. These applications often require the transmission of rotational motion and torque to various sensors, actuators, or measuring devices. Universal joints can facilitate the required motion transfer while compensating for misalignment or angular variations, ensuring accurate data acquisition and reliable testing results.
  3. Spacecraft Deployment Mechanisms: In space exploration missions, universal joints can be employed in deployment mechanisms. These mechanisms are responsible for deploying antennas, solar panels, or other components of spacecraft once they reach their destination. Universal joints can accommodate the complex motion and alignment requirements during the deployment process, ensuring smooth and controlled extension of these critical components.
  4. Engine Accessories: Universal joints can be utilized in certain engine accessories or auxiliary systems in aerospace and aviation. These may include fuel pumps, generators, or hydraulic systems. Universal joints can transmit rotational motion and torque from the engine to these accessories, allowing them to operate efficiently and reliably.
  5. Cautions and Limitations: The usage of universal joints in aerospace and aviation applications requires careful consideration of factors such as weight, space constraints, reliability, and safety. These industries have strict regulations and standards to ensure the highest levels of performance and safety. Therefore, the selection, integration, and testing of universal joints must be performed in accordance with the specific requirements and guidelines provided by the regulatory authorities and industry best practices.

In summary, while universal joints have limited application in aerospace and aviation, they can be utilized in control systems, instrumentation and testing, spacecraft deployment mechanisms, and engine accessories. Careful consideration of the specific requirements, regulations, and safety standards is essential when incorporating universal joints into aerospace and aviation systems to ensure optimal performance and reliability.

universal joint

How do you prevent backlash and vibration issues in a universal joint?

Preventing backlash and vibration issues in a universal joint involves various considerations and measures. Here are some approaches to minimize backlash and mitigate vibration problems:

  • Precision manufacturing: High-quality, precision-manufactured universal joints can help reduce backlash and vibration. Accurate machining and assembly processes ensure tight tolerances and minimize clearances between components, resulting in improved performance and reduced backlash.
  • Proper lubrication: Adequate lubrication is essential to minimize friction and wear, which can contribute to backlash and vibration. Using the recommended lubricant and following the manufacturer’s guidelines for lubrication intervals help ensure smooth operation and reduce backlash in the joint.
  • Alignment: Proper alignment between the input and output shafts is crucial for minimizing backlash and vibration. Aligning the shafts within the manufacturer’s specified tolerances ensures that the joint operates within its designed parameters, reducing stress and potential backlash issues.
  • Balance: Balancing the rotating components, such as yokes and crosses, helps minimize vibration. Imbalances can cause uneven forces and induce vibrations in the joint and the connected system. Balancing techniques, such as adding counterweights or using precision balancing equipment, ensure smoother operation and minimize vibration-related problems.
  • Vibration damping: Applying vibration damping techniques can help mitigate vibration issues. This may involve using vibration-absorbing materials, such as rubber or elastomeric elements, at appropriate locations to absorb and dissipate vibrations. Dampening vibrations can reduce the transmission of unwanted motion and minimize the potential for backlash.
  • Regular maintenance: Routine inspection and maintenance of the universal joint are essential to prevent backlash and vibration problems. This includes checking for wear, proper lubrication, and addressing any signs of misalignment or damage. Timely maintenance helps identify and rectify potential issues before they escalate and affect the performance and reliability of the joint.
  • Appropriate joint selection: Choosing the right type of universal joint for the specific application is crucial. Different joint designs, such as single joint, double joint, constant velocity (CV) joint, or Cardan joint, have varying characteristics and capabilities. Assessing the requirements of the system and selecting a joint that suits the application can help minimize backlash and vibration issues.

Implementing these measures and considering the specific operating conditions and requirements of the system can help prevent or minimize backlash and vibration issues in a universal joint. It is important to consult the manufacturer’s guidelines and recommendations for proper installation, operation, and maintenance of the universal joint to ensure optimal performance and longevity.

universal joint

How do you maintain and service a universal joint?

Maintaining and servicing a universal joint is essential to ensure its optimal performance, longevity, and reliability. Regular maintenance helps identify and address any potential issues before they lead to significant problems. Here are some guidelines for maintaining and servicing a universal joint:

  • Regular inspection: Perform regular visual inspections of the universal joint to check for signs of wear, damage, or misalignment. Look for any loose or missing fasteners, excessive play, or abnormal noise during operation. Inspect the lubrication condition and ensure it is adequate.
  • Lubrication: Proper lubrication is crucial for the smooth operation of a universal joint. Follow the manufacturer’s recommendations for lubrication type, quantity, and intervals. Regularly inspect the lubrication condition and replenish or replace the lubricant as necessary. Ensure that the lubrication points are accessible and apply the lubricant directly to those points.
  • Torque specifications: When performing maintenance or service tasks that involve fasteners or connections, adhere to the manufacturer’s torque specifications. Over-tightening or under-tightening can lead to issues such as stress concentration, fatigue, or premature failure of the universal joint.
  • Alignment: Ensure that the connected shafts are properly aligned. Misalignment can cause excessive stress and wear on the universal joint components. If misalignment is detected, take appropriate measures to correct it, such as adjusting the shafts or using shims or spacers.
  • Fasteners: Regularly inspect and tighten all fasteners, including bolts, nuts, and retaining clips. Check for any signs of corrosion, damage, or wear on the fasteners. Replace any damaged or worn fasteners with suitable replacements according to the manufacturer’s specifications.
  • Seals and boots: If your universal joint has seals or boots, inspect them for damage or deterioration. Damaged seals or boots can lead to contamination or loss of lubricant, affecting the performance and lifespan of the joint. Replace any damaged or worn seals or boots promptly.
  • Operational monitoring: During operation, monitor the universal joint for any abnormal vibrations, noises, or temperature changes. Unusual vibrations or noises can indicate misalignment, wear, or other issues. Excessive heat can be a sign of insufficient lubrication or excessive friction. If any abnormalities are observed, investigate and address them promptly.
  • Service intervals: Follow the recommended service intervals provided by the manufacturer. These intervals may include tasks such as lubrication, inspection, re-greasing, or complete disassembly and reassembly. Adhering to the recommended service intervals helps maintain the optimal performance and reliability of the universal joint.
  • Expert assistance: If you encounter complex issues or are unsure about any maintenance or service tasks, seek assistance from a qualified professional or the manufacturer. They can provide specific guidance, troubleshooting, or perform more in-depth servicing if needed.

Proper maintenance and servicing of a universal joint contribute to its longevity, performance, and overall system reliability. By regularly inspecting the joint, ensuring proper lubrication, alignment, and fastening, and addressing any issues promptly, you can maximize the lifespan and efficiency of the universal joint in your mechanical system.

China Custom Wuxi CZPT Brand Cardan Shaft Spare Parts Universal Joint  China Custom Wuxi CZPT Brand Cardan Shaft Spare Parts Universal Joint
editor by CX 2024-02-17

China supplier Dismantling Joint Universal Coupling Gibault Joint Expansion Joint for Pipe/PVC Pipe

Product Description

1.Description
For Ductile Iron, Steel, PVC-U and Fiber Cement pipes.

Easy and fast installation:
– Angular deflection ± 6°
– Adjust to pipe displacement.

Reliability:
– The large gasket compensates for pipe ovality and irregularities on the pipe surface. 
– Extra long coupling sleeve = secure installation in both connection and repair situations. 
– Body without internal stop allows the connection of pipes of the same ø and pipe expansion, contraction and movement. 
– Leak tightness guaranteed by the compression of the 2 gaskets in the end rings. – Easy and fast installation. Tightening on 1 side only. 
– Corrosion resistance: 250 CHINAMFG epoxy coating and Geomet 500 Gr. B bolts, nuts and washers.

Compliance with standards:
– Foundry products 
– Spheroidal graphite cast iron fittings for PVC drinking water pipes under pressure.
– ISO 2531: Ductile iron pipes, fittings, accessories and their joints for water applications

Approval: 
– ACS French approval for drinking water contact.

Note: This connection does not prevent pipe pull out. Adequate external restraint to pipework is essential.

Characteristics
Range:
– Standard couplings: DN 40 to DN500
PFA 16
Operating temperature: +0°C to +60°C

Applications
Water transmission and distribution network.
Pumping, treatment, storage.
Fire protection network.
Irrigation.
Stormwater drainage and drainage systems. (type WC – NF EN 681-1).

2.Pipe Materials 

3.Drawing

SIZE BOLTS A B C H
SIZE QTY
50 M12×180 2 135 130 110 122
63 M12×180 2 140 145 120 132
75 M12×180 2 152 145 120 132
90 M12×180 3 170 150 120 132
110 M12×210 3 194 160 140 151
125 M12×210 4 209 175 140 151
140 M12×240 4 228 175 140 151
160 M12×240 4 250 175 140 152
200 M12×240 4 294 220 170 181
225 M12×240 6 321 220 170 181
250 M12×280 6 347 220 170 181
315 M12×280 6 414 220 175 185
400 M12×280 8 505 245 195 210
500 M12×280 10 618 245 195 210

About Avannto

Shipments
Valve World Exhibition
FAQ

Dear Customers, the following questions are frequently asked by our customers, we put them as following, if you still have any questions haven’t been answered following, you can call our 24 hours telephone No. to get your quick answer.

1. What are your office hours?
You can reach us from 9:00 A. M. to 9:00 P. M. GTM+8, Monday to Friday, except weekends.
 
 
 

2. How soon can I get a price quote?
Once we know the Size, material, drive method we can provide you with 1 competitive price quote within 24 hours.

3. Can I get a sample?
Yes, the samples are free for you. But you need to offer 1 courier account NO. to afford the fee for samples shipping. The samples’ sending usually takes 5-7days.

4. How can my order produced by my brand?
Yes, you can. Pls offer your brand or LOGO design to us(.AI or.PSD format), then we could produce all goods with your brand or LOGO.

5. What’s your delivery time?
Except our legal holiday, it will take 2-4 weeks for us to finish all your orders’ production.

6. Is there a minimum order requirement?
Due to the high machine setup cost and shipping freight, our minimum order quantity is 5pcs

7. Do you have butterfly valve related accessories?
Yes, we have. We have accessories: pneumatic actuators, electric actuators, limit switches, solenoid valves, etc.

8. Will you match competitors’ prices?
If you find a lower price elsewhere for the exact same specification, we will meet or beat that price as long as it is a little higher than our cost price.

9. What are your terms of delivery?
We accept FOB, CIF etc. You can choose the 1 which is the most convenient or cost effective for you.

10. Where can I meet you by face to face?
A,Our headquarter is located in ZheJiang , if you travel to ZheJiang , you can visit our office at any time, we could pick you up from your location in ZheJiang and ZheJiang .
B,Our factories are located in ZheJiang and HangZhou, welcome to visit our factory before you cooperate with us.
C,We will attend China Spring Canton Fair and China Autumn Canton Fair every year, welcome to visit our booth at that time.

11. How can I be your sole agent in our country?
Welcome you to become our sole agent firstly. According to different countries’ demand, if your yearly purchase quantity from us can reach 10000 to 30000 pcs you could be our sole agent in your country. If you wanna know exact quantity requirement for each country, pls feel free to contact us at any time.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: ISO 2531/En545
Warranty: 20 Years
Standard: ISO 2531/En545
Technique: Casting
Nominal Diameter: Od48-63, Od630-650
Type: Socket Union
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

universal joint

Can universal joints be used in conveyor systems?

Yes, universal joints can be used in conveyor systems, and they offer several advantages in certain applications. Here’s a detailed explanation:

A conveyor system is a mechanical handling equipment used to transport materials from one location to another. It consists of various components, including belts, pulleys, rollers, and drives, that work together to facilitate the movement of items. Universal joints can be incorporated into conveyor systems to transmit rotational motion between different sections or components of the conveyor.

Here are some key points to consider regarding the use of universal joints in conveyor systems:

  1. Misalignment Compensation: Conveyor systems often require flexibility to accommodate misalignment between different sections or components due to factors such as uneven loading, structural variations, or changes in direction. Universal joints are capable of compensating for angular misalignment and can handle variations in the alignment of conveyor sections, allowing for smooth and efficient power transmission.
  2. Smooth Operation: Universal joints provide smooth rotation and can help minimize vibration and shock in conveyor systems. This is especially beneficial when conveying delicate or sensitive materials that require gentle handling. The design of universal joints with needle bearings or other low-friction components helps reduce frictional losses and ensures smooth operation, resulting in less wear and tear on the conveyor system.
  3. Compact Design: Universal joints have a compact and versatile design, making them suitable for conveyor systems where space is limited. They can be integrated into tight spaces and allow for flexibility in the layout and configuration of the system. This compactness also contributes to easier installation and maintenance of the conveyor system.
  4. Variable Operating Angles: Universal joints can operate at varying angles, allowing conveyor systems to navigate curves, bends, or changes in direction. This flexibility in operating angles enables the conveyor system to adapt to the specific layout and requirements of the application, enhancing its overall efficiency and functionality.
  5. Load Transmission: Universal joints are capable of transmitting both torque and radial loads, which is important in conveyor systems. They can handle the forces exerted by the materials being transported and distribute those forces evenly, preventing excessive stress on the system’s components. This feature helps ensure reliable and efficient material handling in the conveyor system.
  6. Application Considerations: While universal joints offer advantages in conveyor systems, it is essential to consider the specific application requirements and operating conditions. Factors such as the type of materials being conveyed, the speed and load capacity of the system, and environmental factors should be taken into account when selecting and designing the conveyor system with universal joints.

In summary, universal joints can be effectively used in conveyor systems to provide misalignment compensation, smooth operation, compact design, variable operating angles, and reliable load transmission. By incorporating universal joints into conveyor systems, it is possible to enhance flexibility, performance, and efficiency in material handling applications.

universal joint

How do you address the effect of temperature variations on a universal joint?

Addressing the effect of temperature variations on a universal joint involves considering factors such as material selection, lubrication, and thermal expansion. Here’s a detailed explanation:

Temperature variations can have an impact on the performance and durability of universal joints. Extreme temperatures can affect the materials, lubrication, and dimensional stability of the joint components. To address these effects, the following measures can be taken:

  • Material Selection: Choosing materials with appropriate temperature resistance is crucial. The materials used in universal joints should have a suitable operating temperature range to withstand the expected temperature variations. For example, selecting heat-resistant alloys or materials with low thermal expansion coefficients can help mitigate the effects of temperature changes.
  • Lubrication: Proper lubrication is essential for reducing friction and wear in universal joints, especially under temperature variations. Lubricants with high-temperature stability and viscosity should be selected to ensure adequate lubrication at both low and high temperatures. It’s important to follow the manufacturer’s recommendations regarding lubrication intervals and the use of lubricants suitable for the operating temperature range.
  • Thermal Expansion Compensation: Universal joints can experience dimensional changes due to thermal expansion or contraction. These changes can affect the alignment and performance of the joint. To address this, measures such as incorporating design features that allow for thermal expansion compensation, using materials with low thermal expansion coefficients, or incorporating flexible elements can help minimize the impact of temperature variations on the joint’s operation.
  • Insulation: In situations where extreme temperatures are anticipated, providing insulation or heat shielding around the universal joint can help maintain more stable operating conditions. Insulation materials can help reduce the transfer of heat to or from the joint, minimizing the temperature variations experienced by the components.
  • Temperature Monitoring: Regular monitoring of the operating temperature of the universal joint can help identify any abnormal temperature variations that may indicate issues with lubrication, excessive friction, or other problems. Temperature sensors or thermal imaging techniques can be utilized for monitoring purposes.

It’s important to note that the specific measures taken to address temperature variations may depend on the application, the expected temperature range, and the manufacturer’s recommendations. Additionally, proper maintenance practices, including inspection, cleaning, and lubrication, are essential for ensuring the optimal performance and longevity of universal joints under temperature variations.

In summary, addressing the effect of temperature variations on a universal joint involves considering material selection, lubrication, thermal expansion compensation, insulation, and temperature monitoring. By implementing appropriate measures, the impact of temperature variations on the universal joint’s performance and durability can be minimized.

universal joint

What are the applications of a universal joint?

A universal joint, also known as a U-joint, finds applications in various industries and mechanical systems where the transmission of rotary motion is required between misaligned shafts. Here are some common applications of universal joints:

  • Automotive Drivelines: One of the most well-known applications of universal joints is in automotive drivelines. Universal joints are used in the drivetrain to transmit power from the engine to the wheels while accommodating the misalignment between the engine, transmission, and axle shafts. They are commonly found in rear-wheel drive and four-wheel drive vehicles, connecting the transmission output shaft to the drive shaft and allowing the wheels to receive power even when the suspension system causes changes in angles and positions.
  • Industrial Machinery: Universal joints are widely used in industrial machinery where the transmission of motion at angles is required. They are employed in various types of machinery, such as conveyors, mixers, pumps, printing presses, and machine tools. Universal joints enable the transfer of rotary motion between misaligned shafts, allowing these machines to operate efficiently and effectively.
  • Marine and Propulsion Systems: In marine applications, universal joints are used in propulsion systems to transmit power from the engine to the propeller shaft. They allow for the necessary flexibility to accommodate the movement of the vessel and changes in the propeller shaft angle. Universal joints are also used in marine steering systems to transfer motion between the steering wheel and the rudder or outboard motor.
  • Agricultural Equipment: Universal joints are utilized in agricultural machinery and equipment such as tractors, combines, and harvesters. They enable the transmission of power between different components, such as the engine, gearbox, and wheels, even when these components are not perfectly aligned. Universal joints provide the necessary flexibility to accommodate the movement and articulation required in agricultural operations.
  • Aerospace and Aviation: Universal joints are used in aerospace and aviation applications where motion transmission at angles is required. They can be found in control systems for aircraft wings, flaps, and landing gear. Universal joints allow for the transfer of motion and control inputs between different components, ensuring smooth and reliable operation.
  • Heavy Machinery and Construction Equipment: Universal joints are employed in heavy machinery and construction equipment, such as cranes, excavators, and loaders. They enable the transmission of power and motion between different parts of the machinery, accommodating the misalignment that may arise due to the movement and articulation of these machines.
  • Railway Systems: Universal joints are used in railway systems for various applications. They are employed in drivetrains and power transmission systems to transmit motion between different components, such as the engine, gearboxes, and axles. Universal joints allow for smooth power transfer while accommodating the misalignment caused by the suspension and movement of the train.
  • Robotics and Automation: Universal joints find applications in robotics and automation systems where motion needs to be transmitted between misaligned components. They are used in robotic arms, manipulators, and other automated systems to enable flexible and precise movement while accommodating misalignment and articulation requirements.

These are just a few examples of the diverse range of applications for universal joints. Their ability to transmit rotary motion between misaligned shafts with flexibility and efficiency makes them an essential component in numerous industries and mechanical systems.

China supplier Dismantling Joint Universal Coupling Gibault Joint Expansion Joint for Pipe/PVC Pipe  China supplier Dismantling Joint Universal Coupling Gibault Joint Expansion Joint for Pipe/PVC Pipe
editor by CX 2024-02-16

China Good quality CZPT Ws Type Telescopic Universal Joints

Product Description

Product Description

Small Type Double Joints Universal Joint Coupling(

Features:
1. It is suitable for transmission coupling space on the same plane of two-axis angle beta β≤45°, the nominal torque transmission 11.2-1120N. 
2. The WSD type is a single joint universal coupling, and the WS type is a double joint universal coupling.
3. Each section is between the largest axis angle of 45º.
4. The finished hole H7, according to the requirements of keyseating, has 6 square holes and a square hole.
5. The angle between the 2 axes is allowed in a limited range as the work requirements change.

Detailed Photos

 

Product Parameters

NO  
 
Tn/N·m
d(H7) D          L0 L L1           m/kg            I/kg·m2
 WSD  
WS
 
WSD WS WSD     WS
Y J1 Y J1 Y J1 Y J1 Y J1 Y J1 Y J1
WS1
WSD1
11.2 8 16 60 80 20 20 0.23 0.32 0.06 0.08
9
10 66 60 86 80 25 22 0.2 0.29 0.05 0.07
WS2
WSD2
22.4 10 20 70 64 96 90 26 0.64 0.57 0.93 0.88 0.1 0.09 0.15 0.15
11
12 84 74 110 100 32 27
WS3
WSD3
45 12 25 90 80 122 112 32 1.45 1.3 2.1 1.95 0.17 0.15 0.24 0.22
14
WS4
WSD4
71 16 32 116 82 154 130 42 30 38 5.92 4.86 8.56 0.48 0.39 0.32 0.56 0.49
18
WS5
WSD5
140 19 40 144 116 192 164 48 16.3 12.9 24 20.6 0.72 0.59 1.04 0.91
20 52 38
22
WS6
WSD6
280 24 50 152 124 210 182 52 38 58 45.7 36.7 68.9 59.7 1.28 1.03 1.89 1.64
25 172 136 330 194 62 44
28
WS7
WSD7
560 30 60 226 182 296 252 82 60 70 148 117 207 177 2.82 2.31 3.9 3.38
32
35
WS8
WSD8
1120 38 75 240 196 332 288 92 396 338 585 525 5.03 4.41 7.25 6.63
40 300 244 392 336 112 84
42

 

Company Profile

HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.

Our company supplies different kinds of products: high quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. To perfect our service, we provide good quality products at a reasonable price.

Welcome to customize products from our factory and please provide your design drawings or contact us if you need other requirements.

 

Our Services

1. Design Services
Our design team has experience in universal joints relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop new models when there are new cars in the market.

5. Quality Control
Every step should be a special test by Professional Staff according to the standard of ISO9001 and TS16949.

FAQ

Q 1: Are you a trading company or a manufacturer?

A: We are a professional manufacturer specializing in manufacturing
various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artwork in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have an excellent price principle when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 6: What is the MOQ?
A: Usually our MOQ is 1pcs.

Q 7: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A: T/T.
 

Thanks!
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Nonstandard
Shaft Hole: as Your Requirement
Torque: as Your Requirement
Bore Diameter: as Your Requirement
Speed: as Your Requirement
Structure: Flexible
Customization:
Available

|

Customized Request

universal joint

Can universal joints be used in precision manufacturing equipment?

Yes, universal joints can be used in precision manufacturing equipment, depending on the specific requirements and applications. Here’s a detailed explanation:

Precision manufacturing equipment often requires precise and reliable motion transmission between different components or subsystems. Universal joints can be employed in such equipment to facilitate the transmission of rotational motion and torque while accommodating misalignment or angular variations. However, their usage in precision manufacturing equipment is subject to certain considerations:

  1. Motion Transmission: Universal joints are effective in transmitting rotational motion and torque across misaligned or non-collinear shafts. In precision manufacturing equipment, where precise and synchronized motion is crucial, universal joints can provide flexibility and compensate for slight misalignments or angular variations, ensuring reliable motion transfer.
  2. Angular Accuracy: Precision manufacturing often requires maintaining precise angular accuracy during operation. While universal joints can accommodate misalignments, they introduce certain angular errors due to their design. These errors may be acceptable or manageable depending on the specific application. However, in cases where extremely tight angular accuracy is required, alternative motion transmission mechanisms, such as precision couplings or direct drives, might be preferred.
  3. Backlash and Play: Universal joints can exhibit a certain degree of backlash or play, which may affect the precision of the manufacturing process. Backlash refers to the slight movement or play that occurs when reversing the direction of rotation. In precision manufacturing equipment, minimizing backlash is often critical. Careful selection of high-quality universal joints or incorporating additional mechanisms to reduce backlash, such as preloading or anti-backlash devices, might be necessary to achieve the desired precision.
  4. Load and Speed Considerations: When using universal joints in precision manufacturing equipment, it is essential to consider the expected loads and operating speeds. Universal joints have specific load and speed limitations, and exceeding these limits can lead to premature wear, reduced precision, or even failure. Careful selection of universal joints with appropriate load and speed ratings based on the application’s requirements is necessary to ensure optimal performance.
  5. Maintenance and Lubrication: Regular maintenance and proper lubrication are crucial for the reliable and precise operation of universal joints in precision manufacturing equipment. Following manufacturer guidelines regarding lubrication intervals, lubricant types, and maintenance procedures is essential. Regular inspection of the joints for wear, damage, or misalignment is also necessary to identify any issues that could affect precision.
  6. Application-Specific Considerations: Each precision manufacturing application may have unique requirements and constraints. Factors such as available space, environmental conditions, required precision levels, and integration with other components should be taken into account when determining the feasibility and suitability of using universal joints. Consulting with experts or manufacturers specializing in precision manufacturing equipment can help in evaluating the best motion transmission solution for a specific application.

In summary, universal joints can be used in precision manufacturing equipment to facilitate motion transmission while accommodating misalignment. However, their usage should be carefully evaluated considering factors such as angular accuracy requirements, backlash and play limitations, load and speed considerations, maintenance needs, and application-specific constraints.

universal joint

How do you calculate the operating angles of a universal joint?

Calculating the operating angles of a universal joint involves measuring the angular displacement between the input and output shafts. Here’s a detailed explanation:

To calculate the operating angles of a universal joint, you need to measure the angles at which the input and output shafts are misaligned. The operating angles are typically expressed as the angles between the axes of the two shafts.

Here’s a step-by-step process for calculating the operating angles:

  1. Identify the input shaft and the output shaft of the universal joint.
  2. Measure and record the angle of the input shaft relative to a reference plane or axis. This can be done using a protractor, angle finder, or other measuring tools. The reference plane is typically a fixed surface or a known axis.
  3. Measure and record the angle of the output shaft relative to the same reference plane or axis.
  4. Calculate the operating angles by finding the difference between the input and output shaft angles. Depending on the arrangement of the universal joint, there may be two operating angles: one for the joint at the input side and another for the joint at the output side.

It’s important to note that the specific method of measuring and calculating the operating angles may vary depending on the design and configuration of the universal joint. Some universal joints have built-in methods for measuring the operating angles, such as markings or indicators on the joint itself.

Additionally, it’s crucial to consider the range of acceptable operating angles specified by the manufacturer. Operating a universal joint beyond its recommended angles can lead to increased wear, reduced lifespan, and potential failure.

In summary, calculating the operating angles of a universal joint involves measuring the angular displacement between the input and output shafts. By measuring the angles and finding the difference between them, you can determine the operating angles of the universal joint.

universal joint

How does a universal joint accommodate misalignment between shafts?

A universal joint, also known as a U-joint, is designed to accommodate misalignment between shafts and allow for the transmission of rotational motion. Let’s explore how a universal joint achieves this:

A universal joint consists of a cross-shaped or H-shaped yoke with bearings at the ends of each arm. The yoke connects the input and output shafts, which are not in line with each other. The design of the universal joint enables it to flex and articulate, allowing for the accommodation of misalignment and changes in angles between the shafts.

When misalignment occurs between the input and output shafts, the universal joint allows for angular displacement. As the input shaft rotates, it causes the yoke to rotate along with it. Due to the perpendicular arrangement of the yoke arms, the output shaft connected to the other arm of the yoke experiences rotary motion at an angle to the input shaft.

The flexibility and articulation of the universal joint come from the bearings at the ends of the yoke arms. These bearings allow for smooth rotation and minimize friction between the yoke and the shafts. They are often enclosed within a housing or cross-shaped cap to provide protection and retain lubrication.

As the input shaft rotates and the yoke moves, the bearings within the universal joint allow for the necessary movement and adjustment. They enable the yoke to accommodate misalignment and changes in angles between the input and output shafts. The bearings allow the yoke to rotate freely and continuously, ensuring that torque can be transmitted smoothly between the shafts despite any misalignment.

By allowing angular displacement and articulation, the universal joint compensates for misalignment and ensures that the rotation of the input shaft is effectively transmitted to the output shaft. This flexibility is particularly important in applications where shafts are not perfectly aligned, such as in automotive drivelines or industrial machinery.

However, it’s important to note that universal joints do have limitations. They introduce a small amount of backlash or play, which can affect precision and accuracy in some applications. Additionally, at extreme angles, the operating angles of the universal joint may become limited, potentially causing increased wear and reducing its lifespan.

In summary, a universal joint accommodates misalignment between shafts by allowing angular displacement and articulation. The bearings within the universal joint enable the yoke to move and adjust, ensuring smooth and continuous rotation between the input and output shafts while compensating for their misalignment.

China Good quality CZPT Ws Type Telescopic Universal Joints  China Good quality CZPT Ws Type Telescopic Universal Joints
editor by CX 2024-02-15

China Good quality Corrosion Resistant Carbon Steel Universal Flanged Rubber Single Ball Expansion Joint

Product Description

Product Description

    Rubber joints are mainly used in food pipelines, so the material of food-grade rubber soft joints must be non-toxic and odorless.
All the rubber joints produced by our company are made of imported silicone collagen materials. Using scientific production technology, the batch method is used to produce raw rubber, aiming at the high tear resistance and high transparency of gas-phase rubber, the super-high and low hardness of mixtures, and their functionality. High-quality silica gel tube produced by mixing rubber and other characteristics, this product has a wide range of adaptability.

 

 

Product Parameters

 

Material of parts     
   
NO       Name                                Material

1        Flange                                Q235

2       Outer/inner rubber              NR,NBR,EPDM

3       Key frame                           Nylon cord fabric

4      Pressurized ring                  Steel wire strand

 

 

 

DN(mm)         Inch(mm) Length Axial displacement(mm) Horizontal displacement Angle of deflection 
Extension Compression
32 1 ¼ 95 6 9 9 15°
40 1 ½ 95 6 10 9 15°
50 2 105 7 10 10 15°
65 2 ½ 115 7 13 11 15°
80 3 135 8 15 12 15°
100 4 150 10 19 13 15°
125 5 165 12 19 13 15°
150 6 180 12 20 14 15°
200 8 210 16 25 22 15°
250 10 230 16 25 22 15°
300 12 245 16 25 22 15°
350 14 255 16 25 22 15°
400 16 255 16 25 22 15°
450 18 255 16 25 22 15°
500   20 255 16 25 22 15°
600   24 260 16 25 22 15°

Data above is only for reference, if  you want much more information, please contact us.

We have various types of molds and multiple sets rubber vulcanizing equipment, which can meet mass production and customization requirements.
 

Technical Conditions    

Type I I I I I I
Working pressure 1.0(10) 1.6(16) 2.5(25)
Explosion pressure 2.0(20) 3.0(30) 4.5(45)
Vacuum 53.3(400) 86.7(650) 100(750)

Applicable Tempefture    -15ºC~+80ºC,Special reachable-30ºC~+160ºC    
Applicable Media    “Air,water,sea water,vacuum,hot water,oil,acid,alkali,etc.”
 

Production process

 

products application

Product application
 This product is widely used in chemical industry, construction, water supply and drainage, petroleum, heavy and light industry, refrigeration, sanitation, plumbing, fire protection, electric power and other basic engineering.According to different materials can be made of acid resistance, alkali resistance, corrosion resistance, oil resistance, high temperature resistance, radiation resistance, wear resistance, aging resistance and other varieties, to adapt to a variety of media and the environment.We can also do pressure testing.
 

Company Profile

 

 

       HangZhou Ruixuan pipeline equipment factory was founded in 1996.It  is an excellent  enterprise  specializing  in manufacturing  and selling pipe fittings.It’s located  in Xicun village ,HangZhou  city,ZheJiang province ,the concentrated  area  of pipeline equipment industry  in China.The  company factory  is located  in Xicun town pipeline equipment industrial park.It covered an area of20000  square  meters.

        At present, the company has the production capacity of pipeline equipment with a maximum diameter of 4000mm, and its main products are: Steel expansion joint, flexible waterproof sleeve, large diameter flange, double flange force transfer expansion joint, large deflection loose sleeve compensation joint, spherical compensation joint, sleeve compensator, bellows compensator, non-metallic compensator, rubber expansion joint, DC medium no thrust sleeve compensator, flexible expansion pipe and other pipeline equipment. The annual production capacity is 30 million sets.

       The flexible telescopic pipe equipment is mainly used in the pipeline crossing different geological structures under different conditions and the application of pipe installation drop, reduce or avoid the impact of geological settlement and crustal activity on the pipeline, so that the construction unit can save more than 50% of the cost when purchasing the equipment. The rubber expansion joint series products of the company, the maximum production diameter of 3600mm, have been applied in millions of units of thermal power projects in China for many times, and have been praised by the users.

        The company passed ISO9001:2008 quality management system certification in 2009 and ISO14000:2004 environmental management system certification in 2009. The company has a strict quality control system, standard production process, standard factory inspection hand section, to ensure that every product meets the national standards and customer requirements.

        Business philosophy: responsible production of products, return the trust of customers; To build a community with a sense of belonging and appreciate employees’ contributions; Make a contribution to the society of enterprises, give back to the good times. HangZhou Ruixuan pipeline equipment factory is willing to work with friends from all walks of life hand in hand, mutual support, create a better future!

 

Certifications

 

exhibition

 

 

FAQ

 

1) How can I get more details about your products?
You can send an email to our email address. We will provide catalogue and pictures of our products for your reference.We can also supply pipe fittings, bolt and nut, gaskets etc. We aim to be your piping system solution provider. 

2) How can I get some samples?   
If you need, we will offer you samples for free, but new customers are expected to pay express charge. 

3) Do you provide customized parts? 
Yes, you can give us drawings and we will manufacture accordingly. 

4) I can’t see the goods or touch the goods, how can I deal with the risk involved?  
Our quality management system conforms to the requirement of ISO 9001:2015 verified by DNV. We are absolutely worth your trust. We can accept trial order to enhance mutual trust.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Brand Name: Ruixuan
Technics: Valcanized Formed
Connection: Flange
Samples:
US$ 8/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

universal joint

How do you calculate the torque capacity of a universal joint?

Calculating the torque capacity of a universal joint involves considering various factors such as the joint’s design, material properties, and operating conditions. Here’s a detailed explanation:

The torque capacity of a universal joint is determined by several key parameters:

  1. Maximum Allowable Angle: The maximum allowable angle, often referred to as the “operating angle,” is the maximum angle at which the universal joint can operate without compromising its performance and integrity. It is typically specified by the manufacturer and depends on the joint’s design and construction.
  2. Design Factor: The design factor accounts for safety margins and variations in load conditions. It is a dimensionless factor typically ranging from 1.5 to 2.0, and it is multiplied by the calculated torque to ensure the joint can handle occasional peak loads or unexpected variations.
  3. Material Properties: The material properties of the universal joint’s components, such as the yokes, cross, and bearings, play a crucial role in determining its torque capacity. Factors such as the yield strength, ultimate tensile strength, and fatigue strength of the materials are considered in the calculations.
  4. Equivalent Torque: The equivalent torque is the torque value that represents the combined effect of the applied torque and the misalignment angle. It is calculated by multiplying the applied torque by a factor that accounts for the misalignment angle and the joint’s design characteristics. This factor is often provided in manufacturer specifications or can be determined through empirical testing.
  5. Torque Calculation: To calculate the torque capacity of a universal joint, the following formula can be used:
    Torque Capacity = (Equivalent Torque × Design Factor) / Safety Factor

    The safety factor is an additional multiplier applied to ensure a conservative and reliable design. The value of the safety factor depends on the specific application and industry standards but is typically in the range of 1.5 to 2.0.

It is important to note that calculating the torque capacity of a universal joint involves complex engineering considerations, and it is recommended to consult manufacturer specifications, guidelines, or engineering experts with experience in universal joint design for accurate and reliable calculations.

In summary, the torque capacity of a universal joint is calculated by considering the maximum allowable angle, applying a design factor, accounting for material properties, determining the equivalent torque, and applying a safety factor. Proper torque capacity calculations ensure that the universal joint can reliably handle the expected loads and misalignments in its intended application.

universal joint

What are the signs of a failing universal joint and how do you diagnose it?

Diagnosing a failing universal joint involves identifying specific signs and symptoms that indicate potential problems. Here’s a detailed explanation:

A failing universal joint can exhibit several signs that indicate a need for inspection, repair, or replacement. Some common signs of a failing universal joint include:

  • Clunking or Knocking Noise: One of the most noticeable signs is a clunking or knocking noise coming from the universal joint area. This noise is often more pronounced during acceleration, deceleration, or when changing gears. The noise may indicate excessive play or wear in the joint’s components.
  • Vibration: A failing universal joint can cause vibrations that are felt throughout the vehicle. These vibrations may be more noticeable at higher speeds or under load conditions. The vibrations can be a result of imbalanced driveshafts or misaligned yokes due to worn or damaged universal joint bearings.
  • Difficulty in Power Transfer: As a universal joint deteriorates, power transfer from the transmission to the driven wheels may become less efficient. This can lead to a decrease in acceleration, reduced towing capacity, or difficulty in maintaining consistent speed. Loss of power transfer efficiency can occur due to worn or seized universal joint components.
  • Visible Wear or Damage: A visual inspection of the universal joint can reveal signs of wear or damage. Look for excessive play or movement in the joint, rust or corrosion on the components, cracked or broken yokes, or worn-out bearings. Any visible signs of damage indicate a potential issue with the universal joint.
  • Grease Leakage: Universal joints are typically lubricated with grease to reduce friction and wear. If you notice grease leakage around the joint or on the surrounding components, it may indicate a failing seal or a damaged bearing, which can lead to joint failure.

To diagnose a failing universal joint, the following steps can be taken:

  1. Perform a visual inspection: Inspect the universal joint and surrounding components for any visible signs of wear, damage, or leakage. Pay attention to the condition of the yokes, bearings, seals, and grease fittings.
  2. Check for excessive play: While the vehicle is on a level surface and the parking brake is engaged, attempt to move the driveshaft back and forth. Excessive play or movement in the universal joint indicates wear or looseness.
  3. Listen for abnormal noises: During a test drive, listen for any clunking, knocking, or unusual noises coming from the universal joint area. Pay attention to noise changes during acceleration, deceleration, and gear changes.
  4. Monitor vibrations: Note any vibrations felt through the vehicle, especially at higher speeds or under load conditions. Excessive vibrations can indicate problems with the universal joint or driveshaft.
  5. Seek professional inspection: If you suspect a failing universal joint but are uncertain about the diagnosis, it’s recommended to consult a professional mechanic or technician with experience in drivetrain systems. They can perform a comprehensive inspection, including measurements and specialized tests, to accurately diagnose the condition of the universal joint.

It’s important to address any signs of a failing universal joint promptly to avoid further damage, drivability issues, or potential safety hazards. Regular maintenance, including periodic inspection and lubrication, can help prevent premature universal joint failure.

In summary, signs of a failing universal joint include clunking or knocking noises, vibrations, difficulty in power transfer, visible wear or damage, and grease leakage. Diagnosing a failing universal joint involves visual inspection, checking for excessive play, listening for abnormal noises, monitoring vibrations, and seeking professional inspection when necessary.

universal joint

What is a universal joint and how does it work?

A universal joint, also known as a U-joint, is a mechanical coupling that allows for the transmission of rotary motion between two shafts that are not in line with each other. It is commonly used in applications where shafts need to transmit motion at angles or around obstacles. The universal joint consists of a cross-shaped or H-shaped yoke with bearings at the ends of each arm. Let’s explore how it works:

A universal joint typically comprises four main components:

  1. Input Shaft: The input shaft is the shaft that provides the initial rotary motion.
  2. Output Shaft: The output shaft is the shaft that receives the rotary motion from the input shaft.
  3. Yoke: The yoke is a cross-shaped or H-shaped component that connects the input and output shafts. It consists of two arms perpendicular to each other.
  4. Bearings: Bearings are located at the ends of each arm of the yoke. These bearings allow for smooth rotation and reduce friction between the yoke and the shafts.

When the input shaft rotates, it causes the yoke to rotate along with it. Due to the perpendicular arrangement of the arms, the output shaft connected to the other arm of the yoke experiences rotary motion at an angle to the input shaft.

The universal joint works by accommodating the misalignment between the input and output shafts. As the input shaft rotates, the yoke allows the output shaft to rotate freely and continuously despite any angular displacement or misalignment between the two shafts. This flexibility of the universal joint enables torque to be transmitted smoothly between the shafts while compensating for their misalignment.

During operation, the bearings at the ends of the yoke arms allow for the rotation of the yoke and the connected shafts. The bearings are often enclosed within a housing or cross-shaped cap to provide protection and retain lubrication. The design of the bearings allows for a range of motion and flexibility, allowing the yoke to move and adjust as the shafts rotate at different angles.

The universal joint is commonly used in various applications, including automotive drivelines, industrial machinery, and power transmission systems. It allows for the transmission of rotary motion at different angles and helps compensate for misalignment, eliminating the need for perfectly aligned shafts.

It is important to note that universal joints have certain limitations. They introduce a small amount of backlash or play, which can affect precision and accuracy in some applications. Furthermore, at extreme angles, the operating angles of the universal joint may become limited, potentially causing increased wear and reducing its lifespan.

Overall, the universal joint is a versatile mechanical coupling that enables the transmission of rotary motion between misaligned shafts. Its ability to accommodate angular displacement and misalignment makes it a valuable component in numerous mechanical systems.

China Good quality Corrosion Resistant Carbon Steel Universal Flanged Rubber Single Ball Expansion Joint  China Good quality Corrosion Resistant Carbon Steel Universal Flanged Rubber Single Ball Expansion Joint
editor by CX 2024-02-14

China Standard Wholesale Metal Universal Joint Professional Manufacture Universal Joint Parts Customized Lighting Joint

Product Description

 

Product Description

 

Material Aluminium Alloy,Carbon Steel,Stainless steel,Copper,Brass,Nylon,Plastic(Customized Material)
Producing Equipment 3 Axis,4 Axis,5 Axis CNC Machines,Automatic Lathe Machines,Stamping Machines,CNC Milling machines,CNC Turning Machines,Turning Milling Compound Machines,Grinding Machines,Rolling Machines,Laser Machines.
Surface Treatment Anodizing,Polishing,Electroplating,Heat Treatment,Spray Paint,Sand Blasting.
Testing Equipment Salt Spray Test, Hardness Tester, Coating Thickness Tester, Two Dimensions Measuring Instrument.
Quality Testing 100% Quality Inspection Before Shipment.
Lead Time Generally, The Delivery Date Is 7-15 Days,Delivery Time of Bulk Order Is More Than 15 days.
Tolerance and Roughness Size Tolerance:+/-0.005 – 0.01mm,Roughness: Ra0.2 – Ra3.2 (Custom Size Requirements)
Cargo Shipment Express(DHL,Fedex,UPS, TNT ),Air shipment+Local Express Delivery,Ocean Shipment.
Main Markets America, Europe, Australia, Asia.
Payment Type T/T, L/C, Paypal,Western Union,Others.

Packaging & Shipping

Company Profile

HangZhou Fuyouda Technology Co., Ltd. Was established in city known as the “world factory”-HangZhou. We are factory and have many kinds of machine, such as 5-axis CNC machines, lath machines, turning milling compound machines. After 10 years of R&D, production and sales, we have 80% market share in the field of 3D printer parts in China and we are specializing in CNC machinig for 10 years. We are committed to creating a work and production environment that is above the industry average. We adopt scientific production management methods to improve production efficiency and reduce production costs. Please believe and choose us! We adhere to the management principles of “Quality First, Customer first and Credit-based” since the establishment of the company and always do our best to satisfy potential needs of our customers. Our company is sincerely willing to cooperate with enterprises from all over the world in order to realize a CHINAMFG situation since the trend of economic globalization has developed with anirresistible force.

Our Advantages

FAQ

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machinery Accessory
Standard: GB, EN
Surface Treatment: Electroplating
Production Type: Mass Production
Machining Method: CNC Turning
Material: Steel, Stainless Steel
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

universal joint

Can universal joints be used in marine and offshore applications?

Yes, universal joints can be used in marine and offshore applications. Here’s a detailed explanation:

Marine and offshore environments present unique challenges in terms of harsh operating conditions, exposure to saltwater, vibrations, and high torque requirements. Universal joints offer several advantages that make them suitable for use in these demanding applications.

1. Misalignment Compensation: Marine and offshore systems often require the transmission of rotary motion between misaligned shafts due to the dynamic nature of the environment. Universal joints excel at compensating for angular misalignment, allowing for smooth power transmission even when the shafts are not perfectly aligned.

2. Torque Transmission: Universal joints are capable of handling high torque loads, which is crucial in marine and offshore applications. They can efficiently transfer power between the main engine or motor and various equipment, such as propellers, winches, pumps, or generators.

3. Compact Design: Space is often limited in marine and offshore systems, and universal joints offer a compact design compared to alternative methods of transmitting motion between misaligned shafts, such as gearboxes or flexible couplings. This compactness allows for more efficient use of available space.

4. Corrosion Resistance: Marine and offshore environments are highly corrosive due to the presence of saltwater and other corrosive agents. Universal joints can be designed and manufactured using materials that exhibit excellent corrosion resistance, such as stainless steel or non-corroding alloys, to ensure long-term performance and reliability in these environments.

5. Sealing and Lubrication: Proper sealing and lubrication are critical in marine and offshore applications to protect the universal joint’s internal components from water ingress and corrosion. Specialized sealing mechanisms, such as lip seals or labyrinth seals, can be implemented to prevent water intrusion, while effective lubrication systems ensure smooth operation and reduce wear.

6. Shock and Vibration Resistance: Marine and offshore equipment are subjected to significant shock and vibration loads due to wave motion, vessel movement, or equipment operation. Universal joints are designed to withstand these dynamic forces and provide reliable power transmission in such conditions. The use of high-quality bearings, robust construction, and proper balancing contribute to their resilience against shock and vibration.

7. Customization: Universal joints can be customized to suit specific marine and offshore applications. Manufacturers can tailor the design and materials to meet unique requirements, such as high-speed operation, extreme temperature variations, or specific size constraints. Customization ensures that the universal joints are optimized for their intended use, maximizing their performance and reliability.

When utilizing universal joints in marine and offshore applications, it is crucial to consider factors such as load requirements, environmental conditions, maintenance procedures, and compliance with relevant industry standards and regulations. Regular inspection, maintenance, and proper lubrication are necessary to ensure the longevity and reliable operation of universal joints in these challenging environments.

In summary, universal joints can be effectively used in marine and offshore applications due to their ability to compensate for misalignment, handle high torque loads, compact design, corrosion resistance, sealing and lubrication capabilities, shock and vibration resistance, and customization options. The selection and design of universal joints should consider the specific requirements and challenges associated with marine and offshore environments to ensure optimal performance and reliability.

universal joint

How does a constant-velocity (CV) joint differ from a traditional universal joint?

A constant-velocity (CV) joint differs from a traditional universal joint in several ways. Here’s a detailed explanation:

A traditional universal joint (U-joint) and a constant-velocity (CV) joint are both used for transmitting torque between non-aligned or angularly displaced shafts. However, they have distinct design and operational differences:

  • Mechanism: The mechanism of torque transmission differs between a U-joint and a CV joint. In a U-joint, torque is transmitted through a set of intersecting shafts connected by a cross or yoke arrangement. The angular misalignment between the shafts causes variations in speed and velocity, resulting in fluctuating torque output. On the other hand, a CV joint uses a set of interconnected elements, typically ball bearings or roller bearings, to maintain a constant velocity and torque output, regardless of the angular displacement between the input and output shafts.
  • Smoothness and Efficiency: CV joints offer smoother torque transmission compared to U-joints. The constant velocity output of a CV joint eliminates speed fluctuations, reducing vibrations and allowing for more precise control and operation. This smoothness is particularly advantageous in applications where precise motion control and uniform power delivery are critical. Additionally, CV joints operate with higher efficiency as they minimize energy losses associated with speed variations and friction.
  • Angular Capability: While U-joints are capable of accommodating larger angular misalignments, CV joints have a limited angular capability. U-joints can handle significant angular displacements, making them suitable for applications with extreme misalignment. In contrast, CV joints are designed for smaller angular displacements and are typically used in applications where constant velocity is required, such as automotive drive shafts.
  • Operating Angles: CV joints can operate at larger operating angles without significant loss in torque or speed. This makes them well-suited for applications that require larger operating angles, such as front-wheel drive vehicles. U-joints, on the other hand, may experience speed fluctuations and reduced torque transmission capabilities at higher operating angles.
  • Complexity and Size: CV joints are generally more complex in design compared to U-joints. They consist of multiple components, including inner and outer races, balls or rollers, cages, and seals. This complexity often results in larger physical dimensions compared to U-joints. U-joints, with their simpler design, tend to be more compact and easier to install in tight spaces.

In summary, a constant-velocity (CV) joint differs from a traditional universal joint (U-joint) in terms of torque transmission mechanism, smoothness, efficiency, angular capability, operating angles, complexity, and size. CV joints provide constant velocity output, smoother operation, and higher efficiency, making them suitable for applications where precise motion control and uniform power delivery are essential. U-joints, with their ability to accommodate larger angular misalignments, are often preferred for applications with extreme misalignment requirements.

universal joint

What are the potential limitations or drawbacks of using universal joints?

While universal joints offer several advantages in transmitting torque between non-aligned or angularly displaced shafts, they also have some limitations and drawbacks to consider. Here are some potential limitations of using universal joints:

  • Angular limitations: Universal joints have specific angular limits within which they can operate efficiently. If the angle between the input and output shafts exceeds these limits, it can lead to increased wear, vibration, and decreased power transmission efficiency. Operating a universal joint at extreme angles or near its angular limits can result in premature failure or reduced service life.
  • Backlash and play: Universal joints can have inherent backlash and play due to the design and clearance between the components. This can result in a loss of precision in torque transmission, especially in applications that require accurate positioning or minimal rotational play.
  • Maintenance and lubrication: Universal joints require regular maintenance and proper lubrication to ensure their optimal performance and longevity. Failing to adhere to the recommended lubrication intervals or using inadequate lubricants can lead to increased friction, wear, and potential joint failure.
  • Limited misalignment compensation: While universal joints can accommodate some misalignment between the input and output shafts, they have limitations in compensating for large misalignments. Excessive misalignment can cause increased stress, wear, and potential binding or seizure of the joint.
  • Non-constant velocity: Standard universal joints, also known as Cardan joints, do not provide constant velocity output. As the joint rotates, the output shaft speed fluctuates due to the changing angular velocity caused by the joint’s design. Applications that require constant velocity output may necessitate the use of alternative joint types, such as constant velocity (CV) joints.
  • Limitations in high-speed applications: Universal joints may not be suitable for high-speed applications due to the potential for vibration, imbalance, and increased stress on the joint components. At high rotational speeds, the joint’s limitations in balance and precision can become more pronounced, leading to reduced performance and potential failure.
  • Space and weight considerations: Universal joints require space to accommodate their design, including the yokes, cross, and bearings. In compact or weight-conscious applications, the size and weight of the universal joint may pose challenges, requiring careful design considerations and trade-offs.

It’s important to evaluate these limitations and drawbacks in the context of the specific application and system requirements. In some cases, alternative power transmission solutions, such as flexible couplings, CV joints, gearboxes, or direct drives, may be more suitable depending on the desired performance, efficiency, and operating conditions.

China Standard Wholesale Metal Universal Joint Professional Manufacture Universal Joint Parts Customized Lighting Joint  China Standard Wholesale Metal Universal Joint Professional Manufacture Universal Joint Parts Customized Lighting Joint
editor by CX 2024-02-13