Product Description
Product Deascription
Specification
Brand | CSZBTR |
Model No | GUN-48 |
Material | stainless steel |
Other Models
PARTA NO. | Dmm | Omm | Lmm |
19 | 44.6 | ||
-06 | 23.84 | 61.3 | |
28 | 52.2 | 83 | |
28 | 37.2 | 68 | |
-01 | 28 | 70.95 | |
28 | 70.95 | ||
28 | 42.5 | 73 | |
28 | 70.95 | ||
3 | 30 | 88 | |
53A-2257125-10 | 35 | 98 | |
A | 39 | 118 | |
39 | 118 | ||
A-1 | 39 | 118 | |
50 | 135 | ||
255B-2257125 | 50 | 155 | |
50 | 155 | ||
53205-22 0571 1 | 50 | 155 | |
5 | 50 | 135 | |
33541 | 62 | 173 | |
62 | 173 | ||
65641 | 72 | 185 |
Part No. | D mm | L mm | Spicer |
5-263X | 34.9 | 126.2 | 5-263X |
5-275X | 34.9 | 126.2 | 5-275X |
5-2X | 23.8 | 61.2 | 5-2X |
5-31000X | 22 | 55 | 5-31000X |
5-310X | 27 | 61.9 | 5-310X |
5-316X | 65.1 | 144.4 | 5-316X |
5-32000X | 23.82 | 61.2 | 5-32000X |
5-33000X | 27 | 74.6 | 5-33000X |
5-3400X | 32 | 76 | 5-3400X |
5-35000X | 36 | 89 | 5-35000X |
5-431X | 33.3 | 67.4 | 5-431X |
5-443X | 27 | 61.9 | 5-443X |
5-4X | 27.01 | 74.6 | 5-4X |
GU1000 | 27 | 81.7 | 5-153X |
GU1100 | 27 | 74.6 | 5-4X |
PARTA NO. | Dmm | Omm | Lmm |
GUN-25 | 32 | 64 | |
GUN-26 | 23. 82 | 64 | 61.3 |
GUN-27 | 25 | 40 | |
GUN-28 | 20. 01 | 35 | 57 |
GUN-29 | 28 | 53 | |
GUN-30 | 30. 188 | 92.08 | |
GUN-31 | 32 | 107 | |
GUN-32 | 35.5 | 119.2 | |
GUN-33 | 43 | 128 | |
GUN-34 | 25 | 52 | |
GUN-36 | 25 | 77.6 | |
GUN-38 | 26 | 45.6 | |
GUN-41 | 43 | 136 | |
GUN-43 | 55.1 | 163.8 | |
GUN-44 | 20.5 | 56.6 | |
GUN-45 | 20.7 | 52.4 | |
GUN-46 | 27 | 46 | |
GUN-47 | 27 | 71.75 | |
GUN-48 | 27 | 81.75 |
Application
Company Profile
HangZhou Terry Machinery Co.Ltd is a leading supplier of bearings, linear motion
system for CNC,ball transfer unit and transmission component. The growing industrial and
favorable policy of HangZhoubenefit the development of Terry Machinery.Our products are
utilized in industrial, motorcycle, vehicleand Automation applications. Now we are exporting
to 46 countries includingUSA, GBR, Germany, Spain,Poland, Turkey ect. The goal of Terry
Machinery to provide out customers with widest range of productsatcompetitive prices, backed
with the best Service.
Packing & Deliverey
Custome Praise
FAQ
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 24 Hours Online Answering |
---|---|
Warranty: | 1 Year |
Condition: | New |
Samples: |
US$ 2/Piece
1 Piece(Min.Order) | Order Sample |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can universal joints be used in marine and offshore applications?
Yes, universal joints can be used in marine and offshore applications. Here’s a detailed explanation:
Marine and offshore environments present unique challenges in terms of harsh operating conditions, exposure to saltwater, vibrations, and high torque requirements. Universal joints offer several advantages that make them suitable for use in these demanding applications.
1. Misalignment Compensation: Marine and offshore systems often require the transmission of rotary motion between misaligned shafts due to the dynamic nature of the environment. Universal joints excel at compensating for angular misalignment, allowing for smooth power transmission even when the shafts are not perfectly aligned.
2. Torque Transmission: Universal joints are capable of handling high torque loads, which is crucial in marine and offshore applications. They can efficiently transfer power between the main engine or motor and various equipment, such as propellers, winches, pumps, or generators.
3. Compact Design: Space is often limited in marine and offshore systems, and universal joints offer a compact design compared to alternative methods of transmitting motion between misaligned shafts, such as gearboxes or flexible couplings. This compactness allows for more efficient use of available space.
4. Corrosion Resistance: Marine and offshore environments are highly corrosive due to the presence of saltwater and other corrosive agents. Universal joints can be designed and manufactured using materials that exhibit excellent corrosion resistance, such as stainless steel or non-corroding alloys, to ensure long-term performance and reliability in these environments.
5. Sealing and Lubrication: Proper sealing and lubrication are critical in marine and offshore applications to protect the universal joint’s internal components from water ingress and corrosion. Specialized sealing mechanisms, such as lip seals or labyrinth seals, can be implemented to prevent water intrusion, while effective lubrication systems ensure smooth operation and reduce wear.
6. Shock and Vibration Resistance: Marine and offshore equipment are subjected to significant shock and vibration loads due to wave motion, vessel movement, or equipment operation. Universal joints are designed to withstand these dynamic forces and provide reliable power transmission in such conditions. The use of high-quality bearings, robust construction, and proper balancing contribute to their resilience against shock and vibration.
7. Customization: Universal joints can be customized to suit specific marine and offshore applications. Manufacturers can tailor the design and materials to meet unique requirements, such as high-speed operation, extreme temperature variations, or specific size constraints. Customization ensures that the universal joints are optimized for their intended use, maximizing their performance and reliability.
When utilizing universal joints in marine and offshore applications, it is crucial to consider factors such as load requirements, environmental conditions, maintenance procedures, and compliance with relevant industry standards and regulations. Regular inspection, maintenance, and proper lubrication are necessary to ensure the longevity and reliable operation of universal joints in these challenging environments.
In summary, universal joints can be effectively used in marine and offshore applications due to their ability to compensate for misalignment, handle high torque loads, compact design, corrosion resistance, sealing and lubrication capabilities, shock and vibration resistance, and customization options. The selection and design of universal joints should consider the specific requirements and challenges associated with marine and offshore environments to ensure optimal performance and reliability.
Can universal joints be used in agricultural equipment?
Yes, universal joints can be used in agricultural equipment. Here’s a detailed explanation:
Universal joints are commonly employed in various types of agricultural equipment and machinery. They offer several advantages that make them suitable for agricultural applications. Here are some key points to consider:
- Torque Transmission: Agricultural equipment often requires the transmission of high torque levels to perform tasks such as plowing, tilling, harvesting, or powering other implements. Universal joints are capable of transmitting significant amounts of torque, making them suitable for handling the power requirements of agricultural machinery.
- Flexibility: Agricultural equipment frequently operates in uneven terrain or encounters obstacles that can cause angular misalignment between the driving and driven components. Universal joints can accommodate such misalignment and transmit torque even when the shafts are not perfectly aligned. This flexibility allows agricultural machinery to navigate uneven surfaces and maintain power transfer.
- Durability: Universal joints can be constructed from materials that provide high strength and durability, such as alloy steels. Agricultural equipment often operates in demanding conditions, including exposure to dust, moisture, and vibrations. Robust universal joints can withstand these harsh environments and repetitive motions, ensuring reliable performance and longevity.
- Cost-Effectiveness: Universal joints offer a cost-effective solution for torque transmission in agricultural equipment. Compared to alternative power transmission methods, such as complex gear systems or hydraulic drives, universal joints can provide a more economical option while still delivering adequate performance and reliability.
- Wide Application Range: Universal joints can be used in various agricultural equipment, including tractors, combine harvesters, balers, seeders, sprayers, and more. They are versatile components that can be integrated into different systems and configurations, allowing for efficient power transmission in a wide range of agricultural applications.
It’s important to note that the specific design and selection of universal joints for agricultural equipment should consider factors such as the torque requirements, operating conditions, maintenance practices, and safety considerations. Proper sizing, lubrication, and regular inspections are crucial for ensuring optimal performance and preventing premature wear or failure.
In summary, universal joints can indeed be used in agricultural equipment. Their torque transmission capabilities, flexibility, durability, cost-effectiveness, and versatility make them a suitable choice for power transmission in various agricultural machinery and equipment.
How does a universal joint accommodate misalignment between shafts?
A universal joint, also known as a U-joint, is designed to accommodate misalignment between shafts and allow for the transmission of rotational motion. Let’s explore how a universal joint achieves this:
A universal joint consists of a cross-shaped or H-shaped yoke with bearings at the ends of each arm. The yoke connects the input and output shafts, which are not in line with each other. The design of the universal joint enables it to flex and articulate, allowing for the accommodation of misalignment and changes in angles between the shafts.
When misalignment occurs between the input and output shafts, the universal joint allows for angular displacement. As the input shaft rotates, it causes the yoke to rotate along with it. Due to the perpendicular arrangement of the yoke arms, the output shaft connected to the other arm of the yoke experiences rotary motion at an angle to the input shaft.
The flexibility and articulation of the universal joint come from the bearings at the ends of the yoke arms. These bearings allow for smooth rotation and minimize friction between the yoke and the shafts. They are often enclosed within a housing or cross-shaped cap to provide protection and retain lubrication.
As the input shaft rotates and the yoke moves, the bearings within the universal joint allow for the necessary movement and adjustment. They enable the yoke to accommodate misalignment and changes in angles between the input and output shafts. The bearings allow the yoke to rotate freely and continuously, ensuring that torque can be transmitted smoothly between the shafts despite any misalignment.
By allowing angular displacement and articulation, the universal joint compensates for misalignment and ensures that the rotation of the input shaft is effectively transmitted to the output shaft. This flexibility is particularly important in applications where shafts are not perfectly aligned, such as in automotive drivelines or industrial machinery.
However, it’s important to note that universal joints do have limitations. They introduce a small amount of backlash or play, which can affect precision and accuracy in some applications. Additionally, at extreme angles, the operating angles of the universal joint may become limited, potentially causing increased wear and reducing its lifespan.
In summary, a universal joint accommodates misalignment between shafts by allowing angular displacement and articulation. The bearings within the universal joint enable the yoke to move and adjust, ensuring smooth and continuous rotation between the input and output shafts while compensating for their misalignment.
editor by CX 2024-01-09
China Hot selling 10c Universal Joint for CZPT
Product Description
Spicer | P (mm) | R (mm) | Caterpillar | Precision | Rockwell | GKN | Alloy | Neapcon | Serie | Bearing type |
5-2002X | 33.34 | 79 | 644683 | 951 | CP2002 | HS520 | 1-2171 | 2C | 4LWT | |
5-2117X | 33.34 | 79 | 316117 | 994 | HS521 | 1-2186 | 2C | 4LWD | ||
5-2116X | 33.34 | 79 | 6S6902 | 952 | CP2116 | 1063 | 2C | 2LWT,2LWD | ||
5-3000X | 36.5 | 90.4 | 5D9153 | 536 | HS530 | 1711 | 3-3152 | 3C | 4LWT | |
5-3014X | 36.5 | 90.4 | 9K1976 | 535 | HS532 | 3C | 2LWT,2LWD | |||
5-4143X | 36.5 | 108 | 6K 0571 | 969 | HS545 | 1689 | 3-4143 | 4C | 4HWD | |
5-4002X | 36.5 | 108 | 6F7160 | 540 | CP4002 | HS540 | 1703 | 3-4138 | 4C | 4LWT |
5-4123X | 36.5 | 108 | 9K3969 | 541 | CP4101 | HS542 | 1704 | 3-4123 | 4C | 2LWT,2LWD |
5-4140X | 36.5 | 108 | 5M800 | 929 | CP4130 | HS543 | 3-4140 | 4C | 2LWT,2HWD | |
5-1405X | 36.5 | 108 | 549 | 1708 | 4C | 4LWD | ||||
5-4141X | 36.5 | 108 | 7M2695 | 996 | 4C | 2LWD,2HWD | ||||
5-5177X | 42.88 | 115.06 | 2K3631 | 968 | CP5177 | HS555 | 1728 | 4-5177 | 5C | 4HWD |
5-5000X | 42.88 | 115.06 | 7J5251 | 550 | CP5122 | HS550 | 1720 | 4-5122 | 5C | 4LWT |
5-5121X | 42.88 | 115.06 | 7J5245 | 552 | CP5101 | HS552 | 1721 | 4-5127 | 5C | 2LWT,2LWD |
5-5173X | 42.88 | 115.06 | 933 | HS553 | 1722 | 4-5173 | 5C | 2LWT,2HWD | ||
5-5000X | 42.88 | 115.06 | 999 | 5C | 4HWD | |||||
5-5139X | 42.88 | 115.06 | 5C | 2LWD,2HWD | ||||||
5-6102X | 42.88 | 140.46 | 643633 | 563 | CP62N-13 | HS563 | 1822 | 4-6114 | 6C | 2LWT,2HWD |
5-6000X | 42.88 | 140.46 | 641152 | 560 | CP62N-47 | HS560 | 1820 | 4-6143 | 6C | 4LWT |
5-6106X | 42.88 | 140.46 | 1S9670 | 905 | CP62N-49 | HS565 | 1826 | 4-6128 | 6C | 4HWD |
G5-6103X | 42.88 | 140.46 | 564 | 1823 | 4-6103 | 6C | 2LWT,2LWD | |||
G5-6104X | 42.88 | 140.46 | 566 | 1824 | 4-6104 | 6C | 4LWD | |||
G5-6149X | 42.88 | 140.46 | 6C | 2LWD,2HWD | ||||||
5-7105X | 49.2 | 148.38 | 6H2577 | 927 | CP72N-31 | HS575 | 1840 | 5-7126 | 7C | 4HWD |
5-7000X | 49.2 | 148.32 | 8F7719 | 570 | CP72N-32 | HS570 | 1841 | 5-7205 | 7C | 4LWT |
5-7202X | 49.2 | 148.38 | 7J5242 | 574 | CP72N-33 | HS573 | 1843 | 5-7207 | 7C | 2LWT,2HWD |
5-7203X | 49.2 | 148.38 | 575 | CP72N-55 | 5-7208 | 7C | 4LWD | |||
5-7206X | 49.2 | 148.38 | 572 | CP72N-34 | 1842 | 5-7206 | 7C | 2LWT,2LWD | ||
5-7204X | 49.2 | 148.38 | 576 | CP72N-57 | 5-7209 | 7C | 2LWD,2HWD | |||
5-8105X | 49.2 | 206.32 | 6H2579 | 928 | CP78WB-2 | HS585 | 1850 | 6-8113 | 8C | 4HWD |
5-8200X | 49.2 | 206.32 | 581 | CP82N-28 | 1851 | 6-8205 | 8C | 4LWT |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Condition: | New |
---|---|
Certification: | ISO, Ts16949 |
Structure: | Single |
Material: | 20cr |
Type: | Universal Joint |
Transport Package: | Box + Plywood Case |
Samples: |
US$ 10/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Can universal joints be used in precision manufacturing equipment?
Yes, universal joints can be used in precision manufacturing equipment, depending on the specific requirements and applications. Here’s a detailed explanation:
Precision manufacturing equipment often requires precise and reliable motion transmission between different components or subsystems. Universal joints can be employed in such equipment to facilitate the transmission of rotational motion and torque while accommodating misalignment or angular variations. However, their usage in precision manufacturing equipment is subject to certain considerations:
- Motion Transmission: Universal joints are effective in transmitting rotational motion and torque across misaligned or non-collinear shafts. In precision manufacturing equipment, where precise and synchronized motion is crucial, universal joints can provide flexibility and compensate for slight misalignments or angular variations, ensuring reliable motion transfer.
- Angular Accuracy: Precision manufacturing often requires maintaining precise angular accuracy during operation. While universal joints can accommodate misalignments, they introduce certain angular errors due to their design. These errors may be acceptable or manageable depending on the specific application. However, in cases where extremely tight angular accuracy is required, alternative motion transmission mechanisms, such as precision couplings or direct drives, might be preferred.
- Backlash and Play: Universal joints can exhibit a certain degree of backlash or play, which may affect the precision of the manufacturing process. Backlash refers to the slight movement or play that occurs when reversing the direction of rotation. In precision manufacturing equipment, minimizing backlash is often critical. Careful selection of high-quality universal joints or incorporating additional mechanisms to reduce backlash, such as preloading or anti-backlash devices, might be necessary to achieve the desired precision.
- Load and Speed Considerations: When using universal joints in precision manufacturing equipment, it is essential to consider the expected loads and operating speeds. Universal joints have specific load and speed limitations, and exceeding these limits can lead to premature wear, reduced precision, or even failure. Careful selection of universal joints with appropriate load and speed ratings based on the application’s requirements is necessary to ensure optimal performance.
- Maintenance and Lubrication: Regular maintenance and proper lubrication are crucial for the reliable and precise operation of universal joints in precision manufacturing equipment. Following manufacturer guidelines regarding lubrication intervals, lubricant types, and maintenance procedures is essential. Regular inspection of the joints for wear, damage, or misalignment is also necessary to identify any issues that could affect precision.
- Application-Specific Considerations: Each precision manufacturing application may have unique requirements and constraints. Factors such as available space, environmental conditions, required precision levels, and integration with other components should be taken into account when determining the feasibility and suitability of using universal joints. Consulting with experts or manufacturers specializing in precision manufacturing equipment can help in evaluating the best motion transmission solution for a specific application.
In summary, universal joints can be used in precision manufacturing equipment to facilitate motion transmission while accommodating misalignment. However, their usage should be carefully evaluated considering factors such as angular accuracy requirements, backlash and play limitations, load and speed considerations, maintenance needs, and application-specific constraints.
What materials are commonly used in the construction of universal joints?
Universal joints are constructed using various materials that provide strength, durability, and resistance to wear and fatigue. Here’s a detailed explanation:
The choice of materials for universal joints depends on factors such as the application, load requirements, operating conditions, and cost considerations. Here are some commonly used materials:
- Steel: Steel is one of the most common materials used in universal joint construction. Alloy steels, such as 4140 or 4340, are often employed due to their high strength, toughness, and resistance to wear and fatigue. Steel universal joints can withstand heavy loads and harsh operating conditions, making them suitable for various industrial applications.
- Stainless Steel: Stainless steel is chosen for universal joints when corrosion resistance is a critical requirement. Stainless steel alloys, such as 304 or 316, offer excellent resistance to rust, oxidation, and chemical corrosion. These joints are commonly used in applications where exposure to moisture, chemicals, or harsh environments is expected.
- Cast Iron: Cast iron is occasionally used in universal joints, particularly in older or specialized applications. Cast iron provides good strength and wear resistance, but it is generally heavier and less flexible than steel. It may be used in specific situations where its properties are advantageous, such as in large industrial machinery.
- Aluminum: Aluminum universal joints are utilized when weight reduction is a priority. Aluminum alloys offer a good balance of strength and lightweight properties. These joints are commonly found in applications where weight savings are crucial, such as aerospace, automotive, or robotics.
- Bronze: Bronze is sometimes used for bearings or bushings within universal joints. Bronze alloys provide good wear resistance, low friction, and the ability to withstand high temperatures. They are often employed in applications where self-lubricating properties and resistance to galling are required. Bronze bearings can be found in universal joints used in heavy machinery, marine equipment, or agricultural machinery.
It’s worth noting that the specific choice of materials may vary depending on the manufacturer, application requirements, and industry standards. Different combinations of materials may also be used for different components within a universal joint, such as the yokes, crosses, bearings, or seals, to optimize performance and durability.
In summary, universal joints are commonly constructed using materials such as steel, stainless steel, cast iron, aluminum, and bronze. The selection of materials depends on factors like strength, durability, wear resistance, corrosion resistance, weight considerations, and specific application requirements.
Are there different types of universal joints available?
Yes, there are different types of universal joints available to suit various applications and requirements. Let’s explore some of the commonly used types:
- Single Joint (Cardan Joint): The single joint, also known as a Cardan joint, is the most basic and widely used type of universal joint. It consists of two yokes connected by a cross-shaped center piece. The yokes are typically 90 degrees out of phase with each other, allowing for angular displacement and misalignment between shafts. Single joints are commonly used in automotive drivelines and industrial applications.
- Double Joint: A double joint, also referred to as a double Cardan joint or a constant velocity joint, is an advanced version of the single joint. It consists of two single joints connected in series with an intermediate shaft in between. The use of two joints in series helps to cancel out the velocity fluctuations and reduce vibration caused by the single joint. Double joints are commonly used in automotive applications, especially in front-wheel-drive vehicles, to provide constant velocity power transmission.
- Tracta Joint: The Tracta joint, also known as a tripod joint or a three-roller joint, is a specialized type of universal joint. It consists of three rollers or balls mounted on a spider-shaped center piece. The rollers are housed in a three-lobed cup, allowing for flexibility and articulation. Tracta joints are commonly used in automotive applications, particularly in front-wheel-drive systems, to accommodate high-speed rotation and transmit torque smoothly.
- Rzeppa Joint: The Rzeppa joint is another type of constant velocity joint commonly used in automotive applications. It features six balls positioned in grooves on a central sphere. The balls are held in place by an outer housing with an inner race. Rzeppa joints provide smooth power transmission and reduced vibration, making them suitable for applications where constant velocity is required, such as drive axles in vehicles.
- Thompson Coupling: The Thompson coupling, also known as a tripodal joint, is a specialized type of universal joint. It consists of three interconnected rods with spherical ends. The arrangement allows for flexibility and misalignment compensation. Thompson couplings are often used in applications where high torque transmission is required, such as industrial machinery and power transmission systems.
These are just a few examples of the different types of universal joints available. Each type has its own advantages and is suitable for specific applications based on factors such as torque requirements, speed, angular displacement, and vibration reduction. The selection of the appropriate type of universal joint depends on the specific needs of the application.
editor by CX 2024-01-08
China supplier 20cr Material Automobile Cardan Cross Shaft Universal Joint Gun-48
Product Description
Product Deascription
Specification
Brand | CSZBTR |
Model No | GUN-48 |
Material | stainless steel |
Other Models
PARTA NO. | Dmm | Omm | Lmm |
19 | 44.6 | ||
-06 | 23.84 | 61.3 | |
28 | 52.2 | 83 | |
28 | 37.2 | 68 | |
-01 | 28 | 70.95 | |
28 | 70.95 | ||
28 | 42.5 | 73 | |
28 | 70.95 | ||
3 | 30 | 88 | |
53A-2257125-10 | 35 | 98 | |
A | 39 | 118 | |
39 | 118 | ||
A-1 | 39 | 118 | |
50 | 135 | ||
255B-2257125 | 50 | 155 | |
50 | 155 | ||
53205-22 0571 1 | 50 | 155 | |
5 | 50 | 135 | |
33541 | 62 | 173 | |
62 | 173 | ||
65641 | 72 | 185 |
Part No. | D mm | L mm | Spicer |
5-263X | 34.9 | 126.2 | 5-263X |
5-275X | 34.9 | 126.2 | 5-275X |
5-2X | 23.8 | 61.2 | 5-2X |
5-31000X | 22 | 55 | 5-31000X |
5-310X | 27 | 61.9 | 5-310X |
5-316X | 65.1 | 144.4 | 5-316X |
5-32000X | 23.82 | 61.2 | 5-32000X |
5-33000X | 27 | 74.6 | 5-33000X |
5-3400X | 32 | 76 | 5-3400X |
5-35000X | 36 | 89 | 5-35000X |
5-431X | 33.3 | 67.4 | 5-431X |
5-443X | 27 | 61.9 | 5-443X |
5-4X | 27.01 | 74.6 | 5-4X |
GU1000 | 27 | 81.7 | 5-153X |
GU1100 | 27 | 74.6 | 5-4X |
PARTA NO. | Dmm | Omm | Lmm |
GUN-25 | 32 | 64 | |
GUN-26 | 23. 82 | 64 | 61.3 |
GUN-27 | 25 | 40 | |
GUN-28 | 20. 01 | 35 | 57 |
GUN-29 | 28 | 53 | |
GUN-30 | 30. 188 | 92.08 | |
GUN-31 | 32 | 107 | |
GUN-32 | 35.5 | 119.2 | |
GUN-33 | 43 | 128 | |
GUN-34 | 25 | 52 | |
GUN-36 | 25 | 77.6 | |
GUN-38 | 26 | 45.6 | |
GUN-41 | 43 | 136 | |
GUN-43 | 55.1 | 163.8 | |
GUN-44 | 20.5 | 56.6 | |
GUN-45 | 20.7 | 52.4 | |
GUN-46 | 27 | 46 | |
GUN-47 | 27 | 71.75 | |
GUN-48 | 27 | 81.75 |
Application
Company Profile
HangZhou Terry Machinery Co.Ltd is a leading supplier of bearings, linear motion
system for CNC,ball transfer unit and transmission component. The growing industrial and
favorable policy of HangZhoubenefit the development of Terry Machinery.Our products are
utilized in industrial, motorcycle, vehicleand Automation applications. Now we are exporting
to 46 countries includingUSA, GBR, Germany, Spain,Poland, Turkey ect. The goal of Terry
Machinery to provide out customers with widest range of productsatcompetitive prices, backed
with the best Service.
Packing & Deliverey
Custome Praise
FAQ
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 24 Hours Online Answering |
---|---|
Warranty: | 1 Year |
Condition: | New |
Samples: |
US$ 2/Piece
1 Piece(Min.Order) | Order Sample |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can universal joints be used in both horizontal and vertical orientations?
Yes, universal joints can be used in both horizontal and vertical orientations. Here’s a detailed explanation:
Universal joints are mechanical devices designed to transmit rotary motion between two shafts that are not in a straight line alignment. They consist of a cross-shaped or H-shaped yoke with bearings at each end that connect to the shafts. The design of universal joints allows them to accommodate angular misalignment between the shafts, making them suitable for various applications, including both horizontal and vertical orientations.
When used in a horizontal orientation, universal joints can transmit rotational motion between shafts that are positioned at different angles or offsets. They are commonly found in drivetrain systems of vehicles, where they transfer power from the engine to the wheels, even when the drivetrain components are not perfectly aligned. In this configuration, universal joints can effectively handle the torque requirements and misalignment caused by uneven terrain, suspension movement, or steering angles.
In a vertical orientation, universal joints can also be utilized to transfer rotational motion between shafts that are positioned vertically. This arrangement is often seen in applications such as industrial equipment, machinery, or agricultural implements. For example, in a vertical power transmission system, a universal joint can be used to connect a vertical driving shaft to a vertical driven shaft, enabling power transfer and accommodating any angular misalignment that may occur due to variations in shaft positions or vibrations.
It’s important to note that the specific design and selection of universal joints for different orientations should consider factors such as the torque requirements, operating conditions, and the manufacturer’s specifications. The orientation of the universal joint may affect factors such as lubrication, load-bearing capacity, and the need for additional support or stabilization mechanisms.
In summary, universal joints can be used in both horizontal and vertical orientations. Their ability to accommodate angular misalignment makes them versatile components for transmitting rotary motion between shafts that are not in a straight line alignment, regardless of the orientation.
How do you address the effect of temperature variations on a universal joint?
Addressing the effect of temperature variations on a universal joint involves considering factors such as material selection, lubrication, and thermal expansion. Here’s a detailed explanation:
Temperature variations can have an impact on the performance and durability of universal joints. Extreme temperatures can affect the materials, lubrication, and dimensional stability of the joint components. To address these effects, the following measures can be taken:
- Material Selection: Choosing materials with appropriate temperature resistance is crucial. The materials used in universal joints should have a suitable operating temperature range to withstand the expected temperature variations. For example, selecting heat-resistant alloys or materials with low thermal expansion coefficients can help mitigate the effects of temperature changes.
- Lubrication: Proper lubrication is essential for reducing friction and wear in universal joints, especially under temperature variations. Lubricants with high-temperature stability and viscosity should be selected to ensure adequate lubrication at both low and high temperatures. It’s important to follow the manufacturer’s recommendations regarding lubrication intervals and the use of lubricants suitable for the operating temperature range.
- Thermal Expansion Compensation: Universal joints can experience dimensional changes due to thermal expansion or contraction. These changes can affect the alignment and performance of the joint. To address this, measures such as incorporating design features that allow for thermal expansion compensation, using materials with low thermal expansion coefficients, or incorporating flexible elements can help minimize the impact of temperature variations on the joint’s operation.
- Insulation: In situations where extreme temperatures are anticipated, providing insulation or heat shielding around the universal joint can help maintain more stable operating conditions. Insulation materials can help reduce the transfer of heat to or from the joint, minimizing the temperature variations experienced by the components.
- Temperature Monitoring: Regular monitoring of the operating temperature of the universal joint can help identify any abnormal temperature variations that may indicate issues with lubrication, excessive friction, or other problems. Temperature sensors or thermal imaging techniques can be utilized for monitoring purposes.
It’s important to note that the specific measures taken to address temperature variations may depend on the application, the expected temperature range, and the manufacturer’s recommendations. Additionally, proper maintenance practices, including inspection, cleaning, and lubrication, are essential for ensuring the optimal performance and longevity of universal joints under temperature variations.
In summary, addressing the effect of temperature variations on a universal joint involves considering material selection, lubrication, thermal expansion compensation, insulation, and temperature monitoring. By implementing appropriate measures, the impact of temperature variations on the universal joint’s performance and durability can be minimized.
How do you choose the right size universal joint for your application?
Choosing the right size universal joint for a specific application involves considering several factors to ensure proper function and performance. Here are key steps to guide you in selecting the appropriate size:
- Identify the application requirements: Determine the specific requirements of your application, such as the maximum torque, speed, angular misalignment, and operating conditions. Understanding these parameters will help in selecting a universal joint that can handle the demands of your application.
- Shaft sizes and connection type: Measure the diameter and type of the shafts that need to be connected by the universal joint. Ensure that the joint you choose has compatible connection options for the shafts, such as keyways, splines, or smooth bores.
- Load capacity: Consider the load capacity or torque rating of the universal joint. It should be capable of handling the maximum torque expected in your application without exceeding its rated capacity. Refer to the manufacturer’s specifications and guidelines for load ratings.
- Operating speed: Take into account the operating speed of your application. Universal joints have speed limitations, and exceeding these limits can result in premature wear, heat generation, and failure. Ensure that the selected joint can handle the required rotational speed without compromising performance.
- Angular misalignment: Determine the maximum angular misalignment between the shafts in your application. Different types of universal joints have varying degrees of angular misalignment capabilities. Choose a joint that can accommodate the required misalignment while maintaining smooth operation.
- Environmental conditions: Assess the environmental conditions in which the universal joint will operate. Consider factors such as temperature, humidity, exposure to chemicals or contaminants, and the presence of vibrations or shocks. Select a joint that is designed to withstand and perform reliably in the specific environmental conditions of your application.
- Consult manufacturer guidelines: Refer to the manufacturer’s guidelines, catalog, or technical documentation for the universal joint you are considering. Manufacturers often provide detailed information on the selection criteria, including sizing charts, application guidelines, and compatibility tables. Following the manufacturer’s recommendations will ensure proper sizing and compatibility.
By following these steps and considering the specific requirements of your application, you can choose the right size universal joint that will provide reliable and efficient operation in your system.
editor by CX 2024-01-04
China Hot selling Popular Tie Rod End Rack End Control Arm Sway Bar Link Ball Joint Replacement for SUV truck car Pickup
Product Description
Popular Tie Rod End Rack End Control Arm Sway Bar Link Ball Joint Replacement for SUV truck car Pickup
Item Name |
control arm ball joint rod end |
Car Model |
For Chana CS15/CS35/CS35PLUS/CS55/CS75/CS75PLUS /CS85/CS95/EADO/EADO PLUS/Raeton/Alsvin/ /NEW Alsvin/V3/V5/V7/CX20/CX70/OSHAN X7/ /UNI-K-T-V/BENBEN MINI/
For CHINAMFG Star 6350/M201/MD201/Huner F70 /KYW/KuaYue
For Xihu (West Lake) Dis. Almaz/Cortez/Confero/Ronguang N300/6407/ /N300P/Baojun 530/ Baojun730
For DFSK K01/K02/K07/K07S/K07II/K17/C31/C32 /C35/C37//V21/V22/V27/V29/Glory 330/Glory 580
For Trumpchi GAC GA3/GA4/GA5/GA6/GA7/GA8/ /GS3/GS4/GS5/GS6/GS7/GS8/M6/M8
For Xihu (West Lake) Dis. H5/H6/H7/H9/HM9/HS5/HS7/L5/L6/L7/L9/ /LS5/LS7/S9/CA770/U-S-B-Concept
|
MOQ |
10 PCS |
Warranty |
Warranty |
Delivery time |
7-15 Days |
Quality |
100% Professional Test |
OEM |
OEM Services Provided |
Service |
24 Hours Customer Service |
Package |
Standard Carton Box+Wooden Shelf |
Shipment |
By Sea or by Express (DHL, TNT, and EMS etc.) |
Payment Terms |
L/C. T/T. D/P. Western-union. Paypal. TT. Alipay. Wechat. |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Provided |
---|---|
Warranty: | 6 Months |
Material: | Stainless Steel |
Certification: | ISO/TS16949 |
Car Make: | WuLing, Chery, Geely, DFSK/ Changan /BYD/Great Wall/ Haval/ Baojun |
Position: | Front |
Customization: |
Available
| Customized Request |
---|
Can universal joints be used in both horizontal and vertical orientations?
Yes, universal joints can be used in both horizontal and vertical orientations. Here’s a detailed explanation:
Universal joints are mechanical devices designed to transmit rotary motion between two shafts that are not in a straight line alignment. They consist of a cross-shaped or H-shaped yoke with bearings at each end that connect to the shafts. The design of universal joints allows them to accommodate angular misalignment between the shafts, making them suitable for various applications, including both horizontal and vertical orientations.
When used in a horizontal orientation, universal joints can transmit rotational motion between shafts that are positioned at different angles or offsets. They are commonly found in drivetrain systems of vehicles, where they transfer power from the engine to the wheels, even when the drivetrain components are not perfectly aligned. In this configuration, universal joints can effectively handle the torque requirements and misalignment caused by uneven terrain, suspension movement, or steering angles.
In a vertical orientation, universal joints can also be utilized to transfer rotational motion between shafts that are positioned vertically. This arrangement is often seen in applications such as industrial equipment, machinery, or agricultural implements. For example, in a vertical power transmission system, a universal joint can be used to connect a vertical driving shaft to a vertical driven shaft, enabling power transfer and accommodating any angular misalignment that may occur due to variations in shaft positions or vibrations.
It’s important to note that the specific design and selection of universal joints for different orientations should consider factors such as the torque requirements, operating conditions, and the manufacturer’s specifications. The orientation of the universal joint may affect factors such as lubrication, load-bearing capacity, and the need for additional support or stabilization mechanisms.
In summary, universal joints can be used in both horizontal and vertical orientations. Their ability to accommodate angular misalignment makes them versatile components for transmitting rotary motion between shafts that are not in a straight line alignment, regardless of the orientation.
What is the lifespan of a typical universal joint?
The lifespan of a typical universal joint can vary depending on several factors. Here’s a detailed explanation:
The lifespan of a universal joint depends on various factors, including the quality of the joint, operating conditions, maintenance practices, and the specific application. While it is challenging to provide an exact lifespan, considering the following factors can help estimate the longevity of a universal joint:
- Quality and Materials: The quality of the universal joint and the materials used in its construction play a significant role in determining its lifespan. High-quality joints made from durable materials, such as alloy steels or stainless steels, tend to have longer lifespans compared to lower-quality or less robust joints made from inferior materials.
- Operating Conditions: The operating conditions in which the universal joint is used can significantly impact its lifespan. Factors such as torque levels, rotational speed, angular misalignment, vibration, temperature, and exposure to contaminants can all affect the joint’s performance and longevity. Operating the joint within its specified limits, avoiding excessive or extreme conditions, and providing proper maintenance can help extend its lifespan.
- Maintenance Practices: Regular maintenance is essential for maximizing the lifespan of a universal joint. Proper lubrication, periodic inspection for wear or damage, and timely replacement of worn components can help prevent premature failure. Adhering to the manufacturer’s recommended maintenance schedule and guidelines is crucial to ensure optimal performance and longevity.
- Application Requirements: The specific application requirements and demands placed on the universal joint influence its lifespan. Heavy-duty applications with high torque, frequent load fluctuations, or extreme operating conditions may result in increased stress and wear on the joint, potentially shortening its lifespan. Selecting a universal joint that is specifically designed and rated for the application’s requirements can help ensure a longer lifespan.
Given these factors, it is challenging to provide a precise lifespan for a typical universal joint. In some applications with proper maintenance and suitable operating conditions, a universal joint can last for several years. However, in demanding or harsh operating environments, or if subjected to excessive loads or misalignment, the lifespan of the joint may be shorter, requiring more frequent replacements.
It’s important to consult the manufacturer’s guidelines and recommendations for the specific universal joint being used, as they can provide more accurate information regarding its expected lifespan under different operating conditions. Additionally, monitoring the joint’s performance, conducting regular inspections, and addressing any signs of wear or deterioration can help identify the need for replacement and ensure safe and reliable operation.
How do you maintain and service a universal joint?
Maintaining and servicing a universal joint is essential to ensure its optimal performance, longevity, and reliability. Regular maintenance helps identify and address any potential issues before they lead to significant problems. Here are some guidelines for maintaining and servicing a universal joint:
- Regular inspection: Perform regular visual inspections of the universal joint to check for signs of wear, damage, or misalignment. Look for any loose or missing fasteners, excessive play, or abnormal noise during operation. Inspect the lubrication condition and ensure it is adequate.
- Lubrication: Proper lubrication is crucial for the smooth operation of a universal joint. Follow the manufacturer’s recommendations for lubrication type, quantity, and intervals. Regularly inspect the lubrication condition and replenish or replace the lubricant as necessary. Ensure that the lubrication points are accessible and apply the lubricant directly to those points.
- Torque specifications: When performing maintenance or service tasks that involve fasteners or connections, adhere to the manufacturer’s torque specifications. Over-tightening or under-tightening can lead to issues such as stress concentration, fatigue, or premature failure of the universal joint.
- Alignment: Ensure that the connected shafts are properly aligned. Misalignment can cause excessive stress and wear on the universal joint components. If misalignment is detected, take appropriate measures to correct it, such as adjusting the shafts or using shims or spacers.
- Fasteners: Regularly inspect and tighten all fasteners, including bolts, nuts, and retaining clips. Check for any signs of corrosion, damage, or wear on the fasteners. Replace any damaged or worn fasteners with suitable replacements according to the manufacturer’s specifications.
- Seals and boots: If your universal joint has seals or boots, inspect them for damage or deterioration. Damaged seals or boots can lead to contamination or loss of lubricant, affecting the performance and lifespan of the joint. Replace any damaged or worn seals or boots promptly.
- Operational monitoring: During operation, monitor the universal joint for any abnormal vibrations, noises, or temperature changes. Unusual vibrations or noises can indicate misalignment, wear, or other issues. Excessive heat can be a sign of insufficient lubrication or excessive friction. If any abnormalities are observed, investigate and address them promptly.
- Service intervals: Follow the recommended service intervals provided by the manufacturer. These intervals may include tasks such as lubrication, inspection, re-greasing, or complete disassembly and reassembly. Adhering to the recommended service intervals helps maintain the optimal performance and reliability of the universal joint.
- Expert assistance: If you encounter complex issues or are unsure about any maintenance or service tasks, seek assistance from a qualified professional or the manufacturer. They can provide specific guidance, troubleshooting, or perform more in-depth servicing if needed.
Proper maintenance and servicing of a universal joint contribute to its longevity, performance, and overall system reliability. By regularly inspecting the joint, ensuring proper lubrication, alignment, and fastening, and addressing any issues promptly, you can maximize the lifespan and efficiency of the universal joint in your mechanical system.
editor by CX 2024-01-03
China factory Dismantling Joint for Suppply Potable/Sewage Water
Product Description
Product Description
Product Name |
Ductile Iron Coupling with Wide range |
Material |
Ductile Iron Body (GGG50), Glavnized garbon steel bots/ Stainless Steel Bolts, CHINAMFG rubber ring |
Registered Brand |
CMAX or CNBM |
Nominal Diameter |
DN50 – DN600mm |
Application |
Water supply, Drainage, Civil Engineering, Construction & Housing, etc. |
Standard |
EN545, EN598, ISO2531 |
Coating |
Fusion Bonded Epoxy (FBE), RAL5005, RAL 5017, R5015…… |
Certifications
SGS Certificates
TUV Certificates
Packaging & Shipping
Wooden Cases/Pallet with wrap film or according to customer’s requirements.
CNBM INTERNATIONAL CORPORATION
Build your world with our materials.
We are a primary subsidiary of China National Building Material Group Co., Ltd.
CNBM Group is a central government-owned enterprise and a Fortune Global 500 company (Ranking 203th in 2019). It is the largest building material manufacturer and service provider in the world, with 15 publicly-listed companies and over 180,000 employees (2017).
CNBM Water Section is 1 of the pioneering suppliers of pipes, fittings and systems in China.
We are leading the market by supplying:
- Ductile iron water and sewer pipes, fittings, valves and couplings and adaptors
- Ductile iron access covers and gratings
- Other types of pipes and fittings
Why choose CNBM?
- Government Credit
CNBM Intl is a primary subsidiary of CHINAMFG Group, a Chinese central governmental enterprise. We’ve been accessed by D&B as Duns Registered 4A1 level since 2012, which endorsed us as 1 of the safest suppliers to work with in China.
- Industry Leader
As an industry leader, CHINAMFG Intl is also a top-ranking buyer of iron ore and coking coal in the world. Our raw materials’ cost and quality are under strict control from A to Z.
- Strong Logistics Capability
1. Professional Logistics team
2. 20,000 containers + 30,000 M3bulk vessel per year = Cost-effective and Prioritized Shipments
3. 50000 M2 Dubai Logistics Park solely-owned by CNBM
- VIP services
1. Professional Sales Team
2. Multi-language Sales Managers
3. One-to-One fast response
- One-Stop Purchase Solution
Over 800 kinds of industrial products within CHINAMFG product range.
Our Services
- Usually you can get our quotation within ONE day. In particular cases, we are committed to providing it within 48 hours.
- Total technical supports from our senior consultant engineers.
- Timely & Cost-efficient delivery.
- Real time information of Chinese market.
- Special discounts and protective policies provided to our distributors/partners.
FAQ
- Are you a trading company or manufacturer?
- CNBM is a large-scale central governmental industrial group with its own manufacturing sector, research and development sector, trading sector and logistics sector.
- I have some special requirement about specifications.
- We have a well-rounded product range, which endows us with the capability of applying many special specifications. Please feel free to contact us with yours.
- Do you accept OEM service?
- Yes, we do.
- What is your delivery time?
- It depends on the size/complexity of your order and our own production schedule. Usually we provide a faster delivery than the industry’s average.
- What is the payment term?
- Our payment terms are negotiable.
- Can I have my own logo on the product?
- Sure, we can apply your own logo on the products according to your drawings.
- Can I get samples?
- Yes, you can. And you only need to bear the delivery costs, if the samples are not too big.
- How is your company’s experience?
- We have an over 20 years of experience in water industry and been exporting to over 56 countries. We cherish our reputation as a company and our customers love us.
- Can I request to change the form of packaging and transportation?
- Sure, we’re glad to fulfill your requirement. Yet please understand that extra costs may occur if the form of packaging and transportation are changed.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Connection: | Flange |
---|---|
Material: | Ductile Cast Iron |
Standard: | Standard |
Usage: | for Drinking Water/Sewage |
Pressure: | Pn10/Pn16/Pn25/Pn40 |
Coating: | Fbe Min. 250microns |
Customization: |
Available
| Customized Request |
---|
Can universal joints be used in marine and offshore applications?
Yes, universal joints can be used in marine and offshore applications. Here’s a detailed explanation:
Marine and offshore environments present unique challenges in terms of harsh operating conditions, exposure to saltwater, vibrations, and high torque requirements. Universal joints offer several advantages that make them suitable for use in these demanding applications.
1. Misalignment Compensation: Marine and offshore systems often require the transmission of rotary motion between misaligned shafts due to the dynamic nature of the environment. Universal joints excel at compensating for angular misalignment, allowing for smooth power transmission even when the shafts are not perfectly aligned.
2. Torque Transmission: Universal joints are capable of handling high torque loads, which is crucial in marine and offshore applications. They can efficiently transfer power between the main engine or motor and various equipment, such as propellers, winches, pumps, or generators.
3. Compact Design: Space is often limited in marine and offshore systems, and universal joints offer a compact design compared to alternative methods of transmitting motion between misaligned shafts, such as gearboxes or flexible couplings. This compactness allows for more efficient use of available space.
4. Corrosion Resistance: Marine and offshore environments are highly corrosive due to the presence of saltwater and other corrosive agents. Universal joints can be designed and manufactured using materials that exhibit excellent corrosion resistance, such as stainless steel or non-corroding alloys, to ensure long-term performance and reliability in these environments.
5. Sealing and Lubrication: Proper sealing and lubrication are critical in marine and offshore applications to protect the universal joint’s internal components from water ingress and corrosion. Specialized sealing mechanisms, such as lip seals or labyrinth seals, can be implemented to prevent water intrusion, while effective lubrication systems ensure smooth operation and reduce wear.
6. Shock and Vibration Resistance: Marine and offshore equipment are subjected to significant shock and vibration loads due to wave motion, vessel movement, or equipment operation. Universal joints are designed to withstand these dynamic forces and provide reliable power transmission in such conditions. The use of high-quality bearings, robust construction, and proper balancing contribute to their resilience against shock and vibration.
7. Customization: Universal joints can be customized to suit specific marine and offshore applications. Manufacturers can tailor the design and materials to meet unique requirements, such as high-speed operation, extreme temperature variations, or specific size constraints. Customization ensures that the universal joints are optimized for their intended use, maximizing their performance and reliability.
When utilizing universal joints in marine and offshore applications, it is crucial to consider factors such as load requirements, environmental conditions, maintenance procedures, and compliance with relevant industry standards and regulations. Regular inspection, maintenance, and proper lubrication are necessary to ensure the longevity and reliable operation of universal joints in these challenging environments.
In summary, universal joints can be effectively used in marine and offshore applications due to their ability to compensate for misalignment, handle high torque loads, compact design, corrosion resistance, sealing and lubrication capabilities, shock and vibration resistance, and customization options. The selection and design of universal joints should consider the specific requirements and challenges associated with marine and offshore environments to ensure optimal performance and reliability.
How do you address the effect of temperature variations on a universal joint?
Addressing the effect of temperature variations on a universal joint involves considering factors such as material selection, lubrication, and thermal expansion. Here’s a detailed explanation:
Temperature variations can have an impact on the performance and durability of universal joints. Extreme temperatures can affect the materials, lubrication, and dimensional stability of the joint components. To address these effects, the following measures can be taken:
- Material Selection: Choosing materials with appropriate temperature resistance is crucial. The materials used in universal joints should have a suitable operating temperature range to withstand the expected temperature variations. For example, selecting heat-resistant alloys or materials with low thermal expansion coefficients can help mitigate the effects of temperature changes.
- Lubrication: Proper lubrication is essential for reducing friction and wear in universal joints, especially under temperature variations. Lubricants with high-temperature stability and viscosity should be selected to ensure adequate lubrication at both low and high temperatures. It’s important to follow the manufacturer’s recommendations regarding lubrication intervals and the use of lubricants suitable for the operating temperature range.
- Thermal Expansion Compensation: Universal joints can experience dimensional changes due to thermal expansion or contraction. These changes can affect the alignment and performance of the joint. To address this, measures such as incorporating design features that allow for thermal expansion compensation, using materials with low thermal expansion coefficients, or incorporating flexible elements can help minimize the impact of temperature variations on the joint’s operation.
- Insulation: In situations where extreme temperatures are anticipated, providing insulation or heat shielding around the universal joint can help maintain more stable operating conditions. Insulation materials can help reduce the transfer of heat to or from the joint, minimizing the temperature variations experienced by the components.
- Temperature Monitoring: Regular monitoring of the operating temperature of the universal joint can help identify any abnormal temperature variations that may indicate issues with lubrication, excessive friction, or other problems. Temperature sensors or thermal imaging techniques can be utilized for monitoring purposes.
It’s important to note that the specific measures taken to address temperature variations may depend on the application, the expected temperature range, and the manufacturer’s recommendations. Additionally, proper maintenance practices, including inspection, cleaning, and lubrication, are essential for ensuring the optimal performance and longevity of universal joints under temperature variations.
In summary, addressing the effect of temperature variations on a universal joint involves considering material selection, lubrication, thermal expansion compensation, insulation, and temperature monitoring. By implementing appropriate measures, the impact of temperature variations on the universal joint’s performance and durability can be minimized.
What are the potential limitations or drawbacks of using universal joints?
While universal joints offer several advantages in transmitting torque between non-aligned or angularly displaced shafts, they also have some limitations and drawbacks to consider. Here are some potential limitations of using universal joints:
- Angular limitations: Universal joints have specific angular limits within which they can operate efficiently. If the angle between the input and output shafts exceeds these limits, it can lead to increased wear, vibration, and decreased power transmission efficiency. Operating a universal joint at extreme angles or near its angular limits can result in premature failure or reduced service life.
- Backlash and play: Universal joints can have inherent backlash and play due to the design and clearance between the components. This can result in a loss of precision in torque transmission, especially in applications that require accurate positioning or minimal rotational play.
- Maintenance and lubrication: Universal joints require regular maintenance and proper lubrication to ensure their optimal performance and longevity. Failing to adhere to the recommended lubrication intervals or using inadequate lubricants can lead to increased friction, wear, and potential joint failure.
- Limited misalignment compensation: While universal joints can accommodate some misalignment between the input and output shafts, they have limitations in compensating for large misalignments. Excessive misalignment can cause increased stress, wear, and potential binding or seizure of the joint.
- Non-constant velocity: Standard universal joints, also known as Cardan joints, do not provide constant velocity output. As the joint rotates, the output shaft speed fluctuates due to the changing angular velocity caused by the joint’s design. Applications that require constant velocity output may necessitate the use of alternative joint types, such as constant velocity (CV) joints.
- Limitations in high-speed applications: Universal joints may not be suitable for high-speed applications due to the potential for vibration, imbalance, and increased stress on the joint components. At high rotational speeds, the joint’s limitations in balance and precision can become more pronounced, leading to reduced performance and potential failure.
- Space and weight considerations: Universal joints require space to accommodate their design, including the yokes, cross, and bearings. In compact or weight-conscious applications, the size and weight of the universal joint may pose challenges, requiring careful design considerations and trade-offs.
It’s important to evaluate these limitations and drawbacks in the context of the specific application and system requirements. In some cases, alternative power transmission solutions, such as flexible couplings, CV joints, gearboxes, or direct drives, may be more suitable depending on the desired performance, efficiency, and operating conditions.
editor by CX 2024-01-02
China Standard Bj212 Universal Joint
Product Description
BJ212 universal joint
More types universal joint | ||||||
NO. | Type | Part No. | Size | MOQ/PCS | ||
1 | B | BJ212 | 30*88 | 2 | 39×118 | 1000 |
5 | A | GU510 | 23.82×61.3 | 2000 | ||
6 | A | GU1100 | 27×74.6 | 2000 | ||
7 | A | GU1000 | 27×81.78 | 2000 | ||
8 | A | GU2000 | 30.188×106.35 | 2000 | ||
9 | A | GU3500 | 39.675×115.42 | 1000 | ||
10 | E | 5-280X (M280) | 49.195*154.855 | 500 | ||
11 | E | GU3000 | 39.68×116 | 500 | ||
12 | I | 5320-22 0571 1 | 50*135 | 500 | ||
13 | I | 53205-22 0571 1 | 50*155 | 500 |
Features:
1, Material: C45(1045) carbon steel, 40Cr steel, 20CrMnTi
2, Excellent performance, long service life and competitive price.
3, Great intensity and rigidity.
4, On time delivery
5, Own ISO9000, TS16949 Certificates
6, Best price with the highest quality.
Quality Control:
1. Chemical Composition confirm after Ingot
2. Hardness after Heat Treatment
3. Final Dimension Check
Quality Assurance Document:
All the Q. A Document as per Client Requirement will be submitted when goods ready.
Packing and Shipping
1. Standard: Wooden case or carton for export
2. Delivery: As per contract delivery on time
3. Shipping: As per client request. We can accept CIF, Door to Door etc. Or client authorized agent we supply all the necessary assistant
Our service:
1. Customized and designed according to the customers’ sample, drawing or requirements
2. Following the customers’ requirements or as our usual packing
3. High quality and competitive price and pure-hearted service.
4. Strictly quality control according to ISO9001: 2008.
5. Flexible minimum order quantity
Our universal joints are with good quality and reasonable price. We can supply you all kinds of u-joints for more than 20 brands’ cars, mechanic machines and agriculture machines, such as Toyota, Nissan, Mazda, Mitsubishi, Isuzu, Hino, Honda, Daihatsu, Suzuki, Subaru, DAF, Benz, Volvo, Scania and etc.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Structure: | Single |
---|---|
Material: | Steel |
Type: | Universal Joint |
Condition: | New |
Automatic: | Automatic |
Certification: | ISO, AISI, DIN |
Customization: |
Available
| Customized Request |
---|
How do you properly maintain and lubricate a universal joint?
Maintaining and lubricating a universal joint is essential to ensure its smooth operation, extend its lifespan, and prevent premature failure. Here’s a detailed explanation of the proper maintenance and lubrication process:
To properly maintain and lubricate a universal joint, follow these steps:
- Consult Manufacturer Guidelines: Refer to the manufacturer’s guidelines and recommendations specific to the universal joint being used. Manufacturers often provide detailed instructions regarding maintenance intervals, lubrication types, and procedures. Familiarize yourself with these guidelines before performing any maintenance or lubrication.
- Inspect the Joint: Regularly inspect the universal joint for signs of wear, damage, or misalignment. Look for indications of excessive play, corrosion, fatigue, or any other abnormalities. Inspecting the joint allows you to identify potential issues before they escalate. If any problems are detected, address them promptly to prevent further damage or failure.
- Clean the Joint: Before applying lubrication, clean the universal joint to remove any dirt, debris, or old lubricant that may have accumulated. Use a suitable cleaning agent or solvent recommended by the manufacturer. It’s important to have a clean surface for effective lubrication.
- Select the Proper Lubricant: Choose the appropriate lubricant specified by the manufacturer. The type of lubricant required may vary based on factors such as the universal joint design, operating conditions, and temperature range. Common lubricants used for universal joints include grease or oil. Ensure that the selected lubricant is compatible with the joint’s materials and operating environment.
- Apply Lubricant: Apply the lubricant to the universal joint according to the manufacturer’s instructions. Pay attention to the specific lubrication points, such as the bearing caps, needle bearings, or trunnions. Use the recommended amount of lubricant to ensure proper coverage and distribution. Avoid over-lubrication as it can lead to excessive heat generation and increased friction.
- Operate the Joint: After lubrication, operate the universal joint to distribute the lubricant evenly and ensure it reaches all necessary components. Rotate or move the joint through its full range of motion several times to facilitate the spreading of the lubricant and to verify smooth operation. This step helps to eliminate any air pockets and ensures that all surfaces are adequately lubricated.
- Monitor and Reapply: Regularly monitor the universal joint’s performance and lubrication condition. Periodically check for any signs of lubricant breakdown, contamination, or leakage. Depending on the manufacturer’s recommendations, reapply lubrication at specified intervals or when necessary to maintain optimal operation. Factors such as operating conditions, load, and temperature may influence the frequency of lubrication.
- Keep Records: Maintain a record of the universal joint’s maintenance activities, including lubrication dates, lubricant type, and any observations made during inspections. These records can help establish a maintenance schedule, track the joint’s performance over time, and serve as a reference for future maintenance or troubleshooting.
By following these steps and adhering to the manufacturer’s guidelines, you can properly maintain and lubricate a universal joint, promoting its longevity, reliability, and optimal performance.
What is the lifespan of a typical universal joint?
The lifespan of a typical universal joint can vary depending on several factors. Here’s a detailed explanation:
The lifespan of a universal joint depends on various factors, including the quality of the joint, operating conditions, maintenance practices, and the specific application. While it is challenging to provide an exact lifespan, considering the following factors can help estimate the longevity of a universal joint:
- Quality and Materials: The quality of the universal joint and the materials used in its construction play a significant role in determining its lifespan. High-quality joints made from durable materials, such as alloy steels or stainless steels, tend to have longer lifespans compared to lower-quality or less robust joints made from inferior materials.
- Operating Conditions: The operating conditions in which the universal joint is used can significantly impact its lifespan. Factors such as torque levels, rotational speed, angular misalignment, vibration, temperature, and exposure to contaminants can all affect the joint’s performance and longevity. Operating the joint within its specified limits, avoiding excessive or extreme conditions, and providing proper maintenance can help extend its lifespan.
- Maintenance Practices: Regular maintenance is essential for maximizing the lifespan of a universal joint. Proper lubrication, periodic inspection for wear or damage, and timely replacement of worn components can help prevent premature failure. Adhering to the manufacturer’s recommended maintenance schedule and guidelines is crucial to ensure optimal performance and longevity.
- Application Requirements: The specific application requirements and demands placed on the universal joint influence its lifespan. Heavy-duty applications with high torque, frequent load fluctuations, or extreme operating conditions may result in increased stress and wear on the joint, potentially shortening its lifespan. Selecting a universal joint that is specifically designed and rated for the application’s requirements can help ensure a longer lifespan.
Given these factors, it is challenging to provide a precise lifespan for a typical universal joint. In some applications with proper maintenance and suitable operating conditions, a universal joint can last for several years. However, in demanding or harsh operating environments, or if subjected to excessive loads or misalignment, the lifespan of the joint may be shorter, requiring more frequent replacements.
It’s important to consult the manufacturer’s guidelines and recommendations for the specific universal joint being used, as they can provide more accurate information regarding its expected lifespan under different operating conditions. Additionally, monitoring the joint’s performance, conducting regular inspections, and addressing any signs of wear or deterioration can help identify the need for replacement and ensure safe and reliable operation.
Can you explain the purpose of a universal joint in a drive shaft?
In a drive shaft, a universal joint serves a crucial purpose in transmitting rotational motion between the engine or power source and the driven wheels or other components. Let’s delve into the purpose of a universal joint in a drive shaft:
A drive shaft is a mechanical component that transfers torque from the engine or power source to the wheels or other driven components in a vehicle or machinery. It is typically used in rear-wheel drive and four-wheel drive systems. The drive shaft connects the transmission output shaft to the differential or axle assembly, allowing the wheels to receive power and propel the vehicle forward.
The purpose of a universal joint in a drive shaft is to accommodate the misalignment and changes in angles between the transmission and the differential or axle assembly. Misalignment can occur due to various factors, including the vehicle’s suspension system, the position of the engine, and the movement of the wheels. Without a flexible coupling mechanism, misalignment would cause binding, vibration, and potential damage to the drive shaft and other drivetrain components.
Universal joints provide the necessary flexibility and articulation to compensate for misalignment and changes in angles. They allow the drive shaft to bend and rotate at varying angles while transmitting torque from the transmission to the differential. The universal joint allows the drive shaft to operate smoothly and efficiently, even when the vehicle is in motion and the suspension system causes changes in the relative positions of the transmission and the differential.
When the engine or power source rotates the drive shaft, the universal joint allows angular displacement between the transmission and the differential. As the drive shaft bends and changes angles, the universal joint accommodates these movements, ensuring continuous torque transmission without placing excessive stress on the drivetrain components.
The universal joint consists of a cross-shaped or H-shaped yoke with bearings at the ends of each arm. These bearings allow for smooth rotation and minimize friction between the yoke and the drive shaft. The design of the universal joint enables it to flex and articulate, compensating for misalignment and changes in angles without affecting the rotation of the drive shaft.
Overall, the purpose of a universal joint in a drive shaft is to provide the necessary flexibility and articulation to accommodate misalignment and changes in angles. By allowing the drive shaft to bend and rotate at varying angles, the universal joint ensures smooth and efficient torque transmission between the engine and the driven wheels or components, contributing to the proper functioning of the vehicle or machinery.
editor by CX 2023-12-29
China wholesaler Ductile Iron Ggg40 Ggg50 ISO2531 En1092 Pn10 Pn16 Pn25 Dismantling Joint
Product Description
Product Description
Product Name |
Ductile Iron Coupling with Wide range |
Material |
Ductile Iron Body (GGG50), Glavnized garbon steel bots/ Stainless Steel Bolts, CHINAMFG rubber ring |
Registered Brand |
CMAX or CNBM |
Nominal Diameter |
DN50 – DN600mm |
Application |
Water supply, Drainage, Civil Engineering, Construction & Housing, etc. |
Standard |
EN545, EN598, ISO2531 |
Coating |
Fusion Bonded Epoxy (FBE), RAL5005, RAL 5017, R5015…… |
Certifications
SGS Certificates
TUV Certificates
Packaging & Shipping
Wooden Cases/Pallet with wrap film or according to customer’s requirements.
CNBM INTERNATIONAL CORPORATION
Build your world with our materials.
We are a primary subsidiary of China National Building Material Group Co., Ltd.
CNBM Group is a central government-owned enterprise and a Fortune Global 500 company (Ranking 203th in 2019). It is the largest building material manufacturer and service provider in the world, with 15 publicly-listed companies and over 180,000 employees (2017).
CNBM Water Section is 1 of the pioneering suppliers of pipes, fittings and systems in China.
We are leading the market by supplying:
- Ductile iron water and sewer pipes, fittings, valves and couplings and adaptors
- Ductile iron access covers and gratings
- Other types of pipes and fittings
Why choose CNBM?
- Government Credit
CNBM Intl is a primary subsidiary of CHINAMFG Group, a Chinese central governmental enterprise. We’ve been accessed by D&B as Duns Registered 4A1 level since 2012, which endorsed us as 1 of the safest suppliers to work with in China.
- Industry Leader
As an industry leader, CHINAMFG Intl is also a top-ranking buyer of iron ore and coking coal in the world. Our raw materials’ cost and quality are under strict control from A to Z.
- Strong Logistics Capability
1. Professional Logistics team
2. 20,000 containers + 30,000 M3bulk vessel per year = Cost-effective and Prioritized Shipments
3. 50000 M2 Dubai Logistics Park solely-owned by CNBM
- VIP services
1. Professional Sales Team
2. Multi-language Sales Managers
3. One-to-One fast response
- One-Stop Purchase Solution
Over 800 kinds of industrial products within CHINAMFG product range.
Our Services
- Usually you can get our quotation within ONE day. In particular cases, we are committed to providing it within 48 hours.
- Total technical supports from our senior consultant engineers.
- Timely & Cost-efficient delivery.
- Real time information of Chinese market.
- Special discounts and protective policies provided to our distributors/partners.
FAQ
- Are you a trading company or manufacturer?
- CNBM is a large-scale central governmental industrial group with its own manufacturing sector, research and development sector, trading sector and logistics sector.
- I have some special requirement about specifications.
- We have a well-rounded product range, which endows us with the capability of applying many special specifications. Please feel free to contact us with yours.
- Do you accept OEM service?
- Yes, we do.
- What is your delivery time?
- It depends on the size/complexity of your order and our own production schedule. Usually we provide a faster delivery than the industry’s average.
- What is the payment term?
- Our payment terms are negotiable.
- Can I have my own logo on the product?
- Sure, we can apply your own logo on the products according to your drawings.
- Can I get samples?
- Yes, you can. And you only need to bear the delivery costs, if the samples are not too big.
- How is your company’s experience?
- We have an over 20 years of experience in water industry and been exporting to over 56 countries. We cherish our reputation as a company and our customers love us.
- Can I request to change the form of packaging and transportation?
- Sure, we’re glad to fulfill your requirement. Yet please understand that extra costs may occur if the form of packaging and transportation are changed.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Connection: | Flange |
---|---|
Material: | Ductile Cast Iron |
Standard: | Standard |
Usage: | for Drinking Water/Sewage |
Pressure: | Pn10/Pn16/Pn25/Pn40 |
Coating: | Fbe Min. 250microns |
Customization: |
Available
| Customized Request |
---|
Can universal joints be used in marine and offshore applications?
Yes, universal joints can be used in marine and offshore applications. Here’s a detailed explanation:
Marine and offshore environments present unique challenges in terms of harsh operating conditions, exposure to saltwater, vibrations, and high torque requirements. Universal joints offer several advantages that make them suitable for use in these demanding applications.
1. Misalignment Compensation: Marine and offshore systems often require the transmission of rotary motion between misaligned shafts due to the dynamic nature of the environment. Universal joints excel at compensating for angular misalignment, allowing for smooth power transmission even when the shafts are not perfectly aligned.
2. Torque Transmission: Universal joints are capable of handling high torque loads, which is crucial in marine and offshore applications. They can efficiently transfer power between the main engine or motor and various equipment, such as propellers, winches, pumps, or generators.
3. Compact Design: Space is often limited in marine and offshore systems, and universal joints offer a compact design compared to alternative methods of transmitting motion between misaligned shafts, such as gearboxes or flexible couplings. This compactness allows for more efficient use of available space.
4. Corrosion Resistance: Marine and offshore environments are highly corrosive due to the presence of saltwater and other corrosive agents. Universal joints can be designed and manufactured using materials that exhibit excellent corrosion resistance, such as stainless steel or non-corroding alloys, to ensure long-term performance and reliability in these environments.
5. Sealing and Lubrication: Proper sealing and lubrication are critical in marine and offshore applications to protect the universal joint’s internal components from water ingress and corrosion. Specialized sealing mechanisms, such as lip seals or labyrinth seals, can be implemented to prevent water intrusion, while effective lubrication systems ensure smooth operation and reduce wear.
6. Shock and Vibration Resistance: Marine and offshore equipment are subjected to significant shock and vibration loads due to wave motion, vessel movement, or equipment operation. Universal joints are designed to withstand these dynamic forces and provide reliable power transmission in such conditions. The use of high-quality bearings, robust construction, and proper balancing contribute to their resilience against shock and vibration.
7. Customization: Universal joints can be customized to suit specific marine and offshore applications. Manufacturers can tailor the design and materials to meet unique requirements, such as high-speed operation, extreme temperature variations, or specific size constraints. Customization ensures that the universal joints are optimized for their intended use, maximizing their performance and reliability.
When utilizing universal joints in marine and offshore applications, it is crucial to consider factors such as load requirements, environmental conditions, maintenance procedures, and compliance with relevant industry standards and regulations. Regular inspection, maintenance, and proper lubrication are necessary to ensure the longevity and reliable operation of universal joints in these challenging environments.
In summary, universal joints can be effectively used in marine and offshore applications due to their ability to compensate for misalignment, handle high torque loads, compact design, corrosion resistance, sealing and lubrication capabilities, shock and vibration resistance, and customization options. The selection and design of universal joints should consider the specific requirements and challenges associated with marine and offshore environments to ensure optimal performance and reliability.
Can universal joints be used in agricultural equipment?
Yes, universal joints can be used in agricultural equipment. Here’s a detailed explanation:
Universal joints are commonly employed in various types of agricultural equipment and machinery. They offer several advantages that make them suitable for agricultural applications. Here are some key points to consider:
- Torque Transmission: Agricultural equipment often requires the transmission of high torque levels to perform tasks such as plowing, tilling, harvesting, or powering other implements. Universal joints are capable of transmitting significant amounts of torque, making them suitable for handling the power requirements of agricultural machinery.
- Flexibility: Agricultural equipment frequently operates in uneven terrain or encounters obstacles that can cause angular misalignment between the driving and driven components. Universal joints can accommodate such misalignment and transmit torque even when the shafts are not perfectly aligned. This flexibility allows agricultural machinery to navigate uneven surfaces and maintain power transfer.
- Durability: Universal joints can be constructed from materials that provide high strength and durability, such as alloy steels. Agricultural equipment often operates in demanding conditions, including exposure to dust, moisture, and vibrations. Robust universal joints can withstand these harsh environments and repetitive motions, ensuring reliable performance and longevity.
- Cost-Effectiveness: Universal joints offer a cost-effective solution for torque transmission in agricultural equipment. Compared to alternative power transmission methods, such as complex gear systems or hydraulic drives, universal joints can provide a more economical option while still delivering adequate performance and reliability.
- Wide Application Range: Universal joints can be used in various agricultural equipment, including tractors, combine harvesters, balers, seeders, sprayers, and more. They are versatile components that can be integrated into different systems and configurations, allowing for efficient power transmission in a wide range of agricultural applications.
It’s important to note that the specific design and selection of universal joints for agricultural equipment should consider factors such as the torque requirements, operating conditions, maintenance practices, and safety considerations. Proper sizing, lubrication, and regular inspections are crucial for ensuring optimal performance and preventing premature wear or failure.
In summary, universal joints can indeed be used in agricultural equipment. Their torque transmission capabilities, flexibility, durability, cost-effectiveness, and versatility make them a suitable choice for power transmission in various agricultural machinery and equipment.
How do you maintain and service a universal joint?
Maintaining and servicing a universal joint is essential to ensure its optimal performance, longevity, and reliability. Regular maintenance helps identify and address any potential issues before they lead to significant problems. Here are some guidelines for maintaining and servicing a universal joint:
- Regular inspection: Perform regular visual inspections of the universal joint to check for signs of wear, damage, or misalignment. Look for any loose or missing fasteners, excessive play, or abnormal noise during operation. Inspect the lubrication condition and ensure it is adequate.
- Lubrication: Proper lubrication is crucial for the smooth operation of a universal joint. Follow the manufacturer’s recommendations for lubrication type, quantity, and intervals. Regularly inspect the lubrication condition and replenish or replace the lubricant as necessary. Ensure that the lubrication points are accessible and apply the lubricant directly to those points.
- Torque specifications: When performing maintenance or service tasks that involve fasteners or connections, adhere to the manufacturer’s torque specifications. Over-tightening or under-tightening can lead to issues such as stress concentration, fatigue, or premature failure of the universal joint.
- Alignment: Ensure that the connected shafts are properly aligned. Misalignment can cause excessive stress and wear on the universal joint components. If misalignment is detected, take appropriate measures to correct it, such as adjusting the shafts or using shims or spacers.
- Fasteners: Regularly inspect and tighten all fasteners, including bolts, nuts, and retaining clips. Check for any signs of corrosion, damage, or wear on the fasteners. Replace any damaged or worn fasteners with suitable replacements according to the manufacturer’s specifications.
- Seals and boots: If your universal joint has seals or boots, inspect them for damage or deterioration. Damaged seals or boots can lead to contamination or loss of lubricant, affecting the performance and lifespan of the joint. Replace any damaged or worn seals or boots promptly.
- Operational monitoring: During operation, monitor the universal joint for any abnormal vibrations, noises, or temperature changes. Unusual vibrations or noises can indicate misalignment, wear, or other issues. Excessive heat can be a sign of insufficient lubrication or excessive friction. If any abnormalities are observed, investigate and address them promptly.
- Service intervals: Follow the recommended service intervals provided by the manufacturer. These intervals may include tasks such as lubrication, inspection, re-greasing, or complete disassembly and reassembly. Adhering to the recommended service intervals helps maintain the optimal performance and reliability of the universal joint.
- Expert assistance: If you encounter complex issues or are unsure about any maintenance or service tasks, seek assistance from a qualified professional or the manufacturer. They can provide specific guidance, troubleshooting, or perform more in-depth servicing if needed.
Proper maintenance and servicing of a universal joint contribute to its longevity, performance, and overall system reliability. By regularly inspecting the joint, ensuring proper lubrication, alignment, and fastening, and addressing any issues promptly, you can maximize the lifespan and efficiency of the universal joint in your mechanical system.
editor by CX 2023-12-26
China Best Sales Factory Direct Sales SA8t/K Fisheye Rod End Joint Bearing Universal Joint, Large Stock
Product Description
SA…PK Series Rod Ends is same as NOS Series Rod Ends,they are belong to maintenance-free Rod Ends bearing. The rod end body is equipped with a left-hand or right-hand external thread. The rod end body is formed by extrusion and the surface of the rod end body is galvanized. And The outer sphere is lined with PTFE synthetic material.
Our priority is 100% quality control and 100% customer satisfaction. We have a responsibility to help our customers to be competitive and advantageous in the market
Company Profile
Yiboyuan (HangZhou City) Precision Machinery Co., Ltd. is located in Bacha Road Industrial Park, HangZhou City, HangZhou City, ZheJiang Province, is a professional manufacturer of linear bearings
integrating design, research and development, production and sales. The company’s main products are: YBYZ linear bearings, YBYZ linear flange bearings, YBYZ nickel-plated linear bearings, YBYZ steel linear bearings, YBYZ box sliders, YBYZ smooth shaft supports, YBYZ self lubricating bearings, YBYZ outer steel inner copper linear bearings, YBYZ aluminum-plastic linear bearings, YBYZ all-plastic linear
bearings, YBYZ graphite copper sleeved linear bearings, YBYZ fixed rings, nut seats, cross shaft brackets and so on. Yiboyuan linear bearings should build the most complete linear bearing enterprises and smooth shaft supporting products at home and abroad, and solve one-stop procurement services for automation companies.Our mission – to create revenue benefits for customers, provide high-quality products for the market, and create a stage for employees to play, the future Yiboyuan is a high-tech, service-oriented, international Yiboyuan, to build a century-old brand is our continuous goal.
Brand trademark registration
Yiboyuan (HangZhou) Precision Machinery Co., Ltd. is a professional manufacturer of linear motion products with many years of experience. And has its own registered brand YBYZ, we specialize in the production of linear bearings, plain bearings, shaft bearings, box sliders, self-lubricating copper sleeve. Good quality, competitive price. Our company is located in HangZhou City, ZheJiang Province. Close to HangZhou Port, ZheJiang Port.
Our products are widely used in precision machinery, fitness equipment, printing presses, packaging machines, medical and food machinery, textile machinery and other machinery and auxiliary equipment. Our products sell well in North America, Western Europe, Australia, Southeast Asia, the Middle East, South America and other regions.
Our packing:
* Industrial pakage+outer carton+pallets
* sigle box+outer carton+pallets
* Tube package+middle box+outer carton+pallets
* According to your requirments
Corporate advantage:
1. Free Sample bearing;
2. ISO Standard;
3. Bearing Small order accepted;
4. In Stock bearing;
5. OEM/ODM bearing service;
6. Professional: more than 20 years of manufacture bearing;
7. Customized bearing, Customer’s bearing drawing or samples accepted;
8. Competitive price bearing: factory outlet.
FAQ
Q: What is your after-sales service and warranty?
A: 1.We are committed to the following responsibilities when we find a defective product:
Warranty 1.12 months from the first day of receipt of the goods;
2. The replacement will be sent with the goods you order;
3. Refund defective products if required by customers.
Q: Do you accept ODM&OEM orders?
A: Yes, we provide ODM&OEM services to customers worldwide, and we also customize OEM boxes and packaging according to your requirements.
Q: What is the minimum order quantity?
A: The minimum order quantity of standardized products is 10pcs; For custom products, the minimum order quantity should be negotiated in advance. There is no MOQ for sample orders.
Q: How long is the lead time?
A: Delivery time is 3-5 days for sample orders and 5-15 days for bulk orders.
Q: Do you offer free samples?
A: Yes, we provide free samples to distributors and wholesalers, but the customer is responsible for the shipping costs. We do not provide free samples to end users.
Q: How to place an order?
A: 1. Email the bearing model, brand, quantity and mode of transportation to us, we will quote the most favorable price for you;
2. Make proforma invoice and send it to you according to the price agreed by both parties;
3. After confirming PI, pay the deposit, and we will arrange production;
4. The balance paid before shipment or after the copy of the shipping note.
Contact us
1-3-3-7-1-4-6-1-6-12 | |
Address: | Industrial Park, Bachalu Town, HangZhou City. HangZhou City, ZheJiang Province. |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Rolling Element: | Single Row |
---|---|
Structure: | Rod End |
Material: | Bearing Steel |
Load Direction: | Radial Spherical Plain Bearing |
Add Lubricant: | Self-lubricating |
Outer Structure: | Whole Outer Ring |
Samples: |
US$ 0.1/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
What are the potential challenges in designing and manufacturing universal joints?
Designing and manufacturing universal joints can present various challenges that need to be addressed to ensure optimal performance and reliability. Here’s a detailed explanation:
1. Misalignment Compensation: Universal joints are primarily designed to accommodate angular misalignment between two shafts. Designing a universal joint that can effectively compensate for misalignment while maintaining smooth power transmission can be challenging. The joint must provide flexibility without sacrificing strength or introducing excessive play, which could lead to vibration, noise, or premature wear.
2. Torque Transmission: Universal joints are often used in applications that require the transfer of high torque loads. Designing the joint to handle these loads without failure or excessive wear is a significant challenge. The selection of appropriate materials, heat treatment processes, and bearing designs becomes crucial to ensure the strength, durability, and reliability of the joint.
3. Lubrication and Sealing: Universal joints require proper lubrication to minimize friction, heat generation, and wear between the moving components. Designing an effective lubrication system that ensures sufficient lubricant supply to all critical areas can be challenging. Additionally, designing seals and protective covers to prevent contamination and retain lubrication presents a challenge, as the joint must maintain flexibility while ensuring adequate sealing.
4. Bearing Design and Wear: Universal joints rely on bearings to facilitate smooth rotation and to support the shafts. Designing the bearing arrangement to withstand the loads, maintain proper alignment, and resist wear is essential. Choosing the appropriate bearing type, such as needle bearings or plain bearings, and optimizing their size, material, and lubrication conditions are key challenges in the design process.
5. Manufacturability: Manufacturing universal joints with precision and consistency can be challenging due to their complex geometries and the need for tight tolerances. The manufacturing process must ensure accurate machining, assembly, and balancing of the joint components to achieve proper fit, alignment, and balance. Specialized machining techniques and quality control measures are often required to meet the desired specifications.
6. Cost and Size Optimization: Designing universal joints that are cost-effective and compact while meeting performance requirements can be a challenging task. Balancing the need for robustness, durability, and material efficiency with cost considerations requires careful engineering and optimization. Designers must strike a balance between performance, weight, space constraints, and manufacturing costs to create an efficient and economical universal joint.
7. Application-Specific Considerations: Designing universal joints for specific applications may introduce additional challenges. Factors such as environmental conditions, temperature extremes, exposure to corrosive substances, high-speed operation, or heavy-duty applications need to be carefully considered and addressed in the design and material selection process. Customization and adaptation of universal joints to meet unique application requirements can pose additional challenges.
Addressing these challenges in the design and manufacturing process requires a combination of engineering expertise, material science knowledge, advanced manufacturing techniques, and thorough testing and validation procedures. Collaboration between design engineers, manufacturing engineers, and quality control personnel is crucial to ensure the successful development and production of reliable universal joints.
In summary, the potential challenges in designing and manufacturing universal joints include misalignment compensation, torque transmission, lubrication and sealing, bearing design and wear, manufacturability, cost and size optimization, and application-specific considerations. Overcoming these challenges requires careful engineering, precision manufacturing processes, and consideration of various factors to achieve high-performance and reliable universal joints.
What materials are commonly used in the construction of universal joints?
Universal joints are constructed using various materials that provide strength, durability, and resistance to wear and fatigue. Here’s a detailed explanation:
The choice of materials for universal joints depends on factors such as the application, load requirements, operating conditions, and cost considerations. Here are some commonly used materials:
- Steel: Steel is one of the most common materials used in universal joint construction. Alloy steels, such as 4140 or 4340, are often employed due to their high strength, toughness, and resistance to wear and fatigue. Steel universal joints can withstand heavy loads and harsh operating conditions, making them suitable for various industrial applications.
- Stainless Steel: Stainless steel is chosen for universal joints when corrosion resistance is a critical requirement. Stainless steel alloys, such as 304 or 316, offer excellent resistance to rust, oxidation, and chemical corrosion. These joints are commonly used in applications where exposure to moisture, chemicals, or harsh environments is expected.
- Cast Iron: Cast iron is occasionally used in universal joints, particularly in older or specialized applications. Cast iron provides good strength and wear resistance, but it is generally heavier and less flexible than steel. It may be used in specific situations where its properties are advantageous, such as in large industrial machinery.
- Aluminum: Aluminum universal joints are utilized when weight reduction is a priority. Aluminum alloys offer a good balance of strength and lightweight properties. These joints are commonly found in applications where weight savings are crucial, such as aerospace, automotive, or robotics.
- Bronze: Bronze is sometimes used for bearings or bushings within universal joints. Bronze alloys provide good wear resistance, low friction, and the ability to withstand high temperatures. They are often employed in applications where self-lubricating properties and resistance to galling are required. Bronze bearings can be found in universal joints used in heavy machinery, marine equipment, or agricultural machinery.
It’s worth noting that the specific choice of materials may vary depending on the manufacturer, application requirements, and industry standards. Different combinations of materials may also be used for different components within a universal joint, such as the yokes, crosses, bearings, or seals, to optimize performance and durability.
In summary, universal joints are commonly constructed using materials such as steel, stainless steel, cast iron, aluminum, and bronze. The selection of materials depends on factors like strength, durability, wear resistance, corrosion resistance, weight considerations, and specific application requirements.
How do you choose the right size universal joint for your application?
Choosing the right size universal joint for a specific application involves considering several factors to ensure proper function and performance. Here are key steps to guide you in selecting the appropriate size:
- Identify the application requirements: Determine the specific requirements of your application, such as the maximum torque, speed, angular misalignment, and operating conditions. Understanding these parameters will help in selecting a universal joint that can handle the demands of your application.
- Shaft sizes and connection type: Measure the diameter and type of the shafts that need to be connected by the universal joint. Ensure that the joint you choose has compatible connection options for the shafts, such as keyways, splines, or smooth bores.
- Load capacity: Consider the load capacity or torque rating of the universal joint. It should be capable of handling the maximum torque expected in your application without exceeding its rated capacity. Refer to the manufacturer’s specifications and guidelines for load ratings.
- Operating speed: Take into account the operating speed of your application. Universal joints have speed limitations, and exceeding these limits can result in premature wear, heat generation, and failure. Ensure that the selected joint can handle the required rotational speed without compromising performance.
- Angular misalignment: Determine the maximum angular misalignment between the shafts in your application. Different types of universal joints have varying degrees of angular misalignment capabilities. Choose a joint that can accommodate the required misalignment while maintaining smooth operation.
- Environmental conditions: Assess the environmental conditions in which the universal joint will operate. Consider factors such as temperature, humidity, exposure to chemicals or contaminants, and the presence of vibrations or shocks. Select a joint that is designed to withstand and perform reliably in the specific environmental conditions of your application.
- Consult manufacturer guidelines: Refer to the manufacturer’s guidelines, catalog, or technical documentation for the universal joint you are considering. Manufacturers often provide detailed information on the selection criteria, including sizing charts, application guidelines, and compatibility tables. Following the manufacturer’s recommendations will ensure proper sizing and compatibility.
By following these steps and considering the specific requirements of your application, you can choose the right size universal joint that will provide reliable and efficient operation in your system.
editor by CX 2023-12-25
China high quality Gut23 Universal Joint OEM, 04371-60070
Product Description
Manufacturer Auto Spare Parts Car Suspension parts Electrical parts Body parts Engine parts and Accessories for CHINAMFG Vios Yaris Corolla Fortuner Hilux CHINAMFG Hiace LandCruiser Coster 4Runner Highlander Camryetc.571160070,57110K080,571OK012,GUT12,GU1000,GUT12,
Product Description
A Universal joint, U-joint, Cross joint, or Cardan joint, is a joint or coupling in a rigid rod that allows the rod to ‘bend’ in any direction, and is commonly used in shafts that transmit rotary motion, is used for transmission systems of cars, buses, trucks, and tractors.
Installation Instructions
Product Details:
Product: Universal Joint.
Hardness: HRC58-64.
Brand: LR or OEM service.
Packing: Plastic bag, color/white box, carton, wood pallet.
Sample policy: Free sample, freight collect.
our catalog:
Detailed Photos
other instructions
1>it is FOB HangZhou price . (also can send free to HangZhou HangZhou /ning bo ZheJiang and so on. warehouse .)
2>the material is 20cr good material , must not any complain from your customers. (also have 20Mn . 20cr Mn Ti )
3>our delivery time is 40days (with 20Gp container ) . very in time .
4> Can develop according to customer’s drawings or samples
5> OEM is available
6> Full range for the universal joint
7> Good quality and resonable price
Packaging & Shipping
the packing . Standard netural packing with carton.
Delivery detail: 30-45 working days,depend on the actual produce condition.
Company Profile
HangZhou Chuangbang Locomotive Parts Co., Ltd. is a manufacturer of cross shaft and three-pronged universal joint. The company now has mature production technology, testing equipment and set up R & D, mold development center, quality inspection, sales and other departments, greatly improving the productivity and product quality stability. After years of efforts, the company’s product quality and technology in the forefront of the domestic, and with its intimate after-sales service to win the trust of customers, but also won a good reputation for themselves. After years of hard work and struggle, the company has expanded its business to overseas markets, and has established mutually winning cooperative relations with customers in other foreign markets. As the company name indicates, we are running, innovating, we have been running, constantly innovating! But every time we run, the reason for innovation is because of you!If you need know us, please visit our website.
FAQ
Q1: What is the location of your company?
A1: Our company is located in the TangXia (RuiAn) City ,ZHangZhoug province,China.Welcome to visit our factory at anytime!
Q2: How does your factory do regarding quality control?
A2: Our standard QC system to control quality(TS16949 2016).
Q3: What is your delivery time?
A3: Usually within 30-40 days after the receipt of payment.Delivery time must depend on the actual produce condition.
Q4: What are your strengths?
A4: 1.We are the manufacturer,having competitive advantage in price.
2.A large part of money is put into advancing CNC equipments and product
R&D department annual,the performance of universal joint can be guaranteed.
3.About quality issues or follow-up after-sales service,we report directly to the boss.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Condition: | New |
---|---|
Color: | Silver |
Certification: | ISO |
Structure: | Double |
Material: | Stainless Steel |
Type: | Retractable |
Customization: |
Available
| Customized Request |
---|
How do you retrofit an existing mechanical system with a universal joint?
Retrofitting an existing mechanical system with a universal joint involves modifying or adding components to integrate the universal joint into the system. Here’s a detailed explanation of the retrofitting process:
To retrofit an existing mechanical system with a universal joint, follow these steps:
- Evaluate the System: Begin by thoroughly assessing the existing mechanical system. Understand its design, components, and the type of motion it requires. Identify the specific area where the universal joint needs to be incorporated and determine the necessary modifications or additions.
- Design Considerations: Take into account the operating conditions, load requirements, and available space in the system. Consider the size, type, and specifications of the universal joint that will best suit the retrofit. This includes selecting the appropriate joint size, torque capacity, operating angles, and any additional features required for compatibility with the system.
- Measurements and Alignment: Accurately measure the dimensions and alignment of the existing system, particularly the shafts involved in the retrofit. Ensure that the required modifications or additions align properly with the system’s existing components. Precise measurements are crucial for a successful retrofit.
- Modify Existing Components: In some cases, it may be necessary to modify certain components of the existing system to accommodate the universal joint. This could involve machining or welding to create attachment points or adjust the dimensions of the system’s components to ensure proper fitment of the universal joint and its associated parts.
- Integrate the Universal Joint: Install the universal joint into the retrofit area according to the system’s requirements and design considerations. This involves securely attaching the universal joint to the modified or existing components using appropriate fasteners or connection methods as specified by the manufacturer. Ensure that the joint is properly aligned with the shafts to facilitate smooth and efficient motion transfer.
- Supporting Components: Depending on the specific retrofit requirements, additional supporting components may be needed. This can include yokes, bearings, shaft couplings, or guards to ensure proper functioning and protection of the universal joint assembly and the overall system.
- Testing and Adjustment: Once the retrofit is complete, thoroughly test the system to ensure that the universal joint operates smoothly and meets the desired performance requirements. Make any necessary adjustments to align the system and optimize its functionality. It is essential to verify that the retrofit does not introduce any adverse effects or compromise the overall operation of the mechanical system.
Retrofitting an existing mechanical system with a universal joint requires careful planning, precise measurements, and proper integration of the joint into the system. By following these steps and considering the design considerations and compatibility, it is possible to successfully incorporate a universal joint into an existing mechanical system and enhance its functionality and performance.
How do you prevent backlash and vibration issues in a universal joint?
Preventing backlash and vibration issues in a universal joint involves various considerations and measures. Here are some approaches to minimize backlash and mitigate vibration problems:
- Precision manufacturing: High-quality, precision-manufactured universal joints can help reduce backlash and vibration. Accurate machining and assembly processes ensure tight tolerances and minimize clearances between components, resulting in improved performance and reduced backlash.
- Proper lubrication: Adequate lubrication is essential to minimize friction and wear, which can contribute to backlash and vibration. Using the recommended lubricant and following the manufacturer’s guidelines for lubrication intervals help ensure smooth operation and reduce backlash in the joint.
- Alignment: Proper alignment between the input and output shafts is crucial for minimizing backlash and vibration. Aligning the shafts within the manufacturer’s specified tolerances ensures that the joint operates within its designed parameters, reducing stress and potential backlash issues.
- Balance: Balancing the rotating components, such as yokes and crosses, helps minimize vibration. Imbalances can cause uneven forces and induce vibrations in the joint and the connected system. Balancing techniques, such as adding counterweights or using precision balancing equipment, ensure smoother operation and minimize vibration-related problems.
- Vibration damping: Applying vibration damping techniques can help mitigate vibration issues. This may involve using vibration-absorbing materials, such as rubber or elastomeric elements, at appropriate locations to absorb and dissipate vibrations. Dampening vibrations can reduce the transmission of unwanted motion and minimize the potential for backlash.
- Regular maintenance: Routine inspection and maintenance of the universal joint are essential to prevent backlash and vibration problems. This includes checking for wear, proper lubrication, and addressing any signs of misalignment or damage. Timely maintenance helps identify and rectify potential issues before they escalate and affect the performance and reliability of the joint.
- Appropriate joint selection: Choosing the right type of universal joint for the specific application is crucial. Different joint designs, such as single joint, double joint, constant velocity (CV) joint, or Cardan joint, have varying characteristics and capabilities. Assessing the requirements of the system and selecting a joint that suits the application can help minimize backlash and vibration issues.
Implementing these measures and considering the specific operating conditions and requirements of the system can help prevent or minimize backlash and vibration issues in a universal joint. It is important to consult the manufacturer’s guidelines and recommendations for proper installation, operation, and maintenance of the universal joint to ensure optimal performance and longevity.
What lubrication is required for a universal joint?
Proper lubrication is crucial for the smooth and efficient operation of a universal joint. The type and amount of lubrication required may vary depending on the specific design and manufacturer’s recommendations. Here are some general guidelines:
- High-quality lubricant: It is important to use a high-quality lubricant that is specifically recommended for universal joints. Consult the manufacturer’s guidelines or technical documentation to determine the appropriate lubricant type and viscosity for your universal joint.
- Grease or oil: Universal joints can be lubricated with either grease or oil, depending on the design and application requirements. Grease is commonly used as it provides good lubrication and helps to seal out contaminants. Oil can be used in applications that require constant lubrication or when specified by the manufacturer.
- Quantity of lubrication: Apply the recommended quantity of lubricant as specified by the manufacturer. Over-greasing or under-greasing can lead to problems such as excessive heat, increased friction, or inadequate lubrication. Follow the manufacturer’s guidelines to ensure the optimal amount of lubricant is applied.
- Lubrication points: Identify the lubrication points on the universal joint. These are typically located at the cross bearings or bearing cups where the cross interfaces with the yoke. Apply the lubricant directly to these points to ensure proper lubrication of the moving components.
- Lubrication intervals: Establish a lubrication schedule based on the operating conditions and manufacturer’s recommendations. Regularly inspect and lubricate the universal joint according to the specified intervals. Factors such as operating speed, load, temperature, and environmental conditions may influence the frequency of lubrication.
- Re-lubrication: In some cases, universal joints may have provisions for re-lubrication. This involves purging old lubricant and replenishing it with fresh lubricant. Follow the manufacturer’s instructions for the re-lubrication procedure, including the recommended interval and method.
- Environmental considerations: Consider the operating environment when selecting the lubricant. Factors such as temperature extremes, exposure to moisture or chemicals, and the presence of contaminants can affect the choice and performance of the lubricant. Choose a lubricant that is suitable for the specific environmental conditions of your application.
- Maintenance and inspection: Regularly inspect the universal joint for signs of inadequate lubrication, excessive wear, or contamination. Monitor the temperature of the joint during operation, as excessive heat can indicate insufficient lubrication. Address any lubrication issues promptly to ensure the proper functioning and longevity of the universal joint.
Always refer to the manufacturer’s recommendations and guidelines for lubrication specific to your universal joint model. Following the proper lubrication practices will help optimize the performance, reduce wear, and extend the lifespan of the universal joint.
editor by CX 2023-12-22
China high quality Wholesale CZPT 33-42 Inner Tie Rod End Ball Joint Extractor Remover Tool for Car Repair
Product Description
Product Description
*Notice: Professional Reliable sourcing tool factory and supplier in China.welcome you to contact us
wholesale CHINAMFG 33-42 Inner Tie Rod End ball joint extractor remover Tool for car repair
Description
Use to replace the inner tie rod ends without replacing the rack and pinion
Universal use.
Capacity 33-42mm.
Product Parameters
Item No |
DN-B1571 |
G.W/N.W |
12.5/11.5kg |
Package |
Carton |
Size |
26*16.5*21 cm |
QTY |
24 |
Our Advantages
1. Offer OEM Service for brand tools,there are more than 20 years experiences
2. Accepted Customized Service for new tools to explore markets
3. Accepted original design & customized color carton,label,according to UI
4. Only product HQ Tools
5. Accepted OEM and ODM service(according to customer demand production of products that meet the customer requirements and design processing (ODM) in accordance with customer requirements, design, OEM production meets the requirements for the customer the product, the development of manufacturing technology and ability)
May Be You Also Like
*Product List
Ball Joint Separator Open:22mm Item No:DN-B1011 |
Multi Purpose Inner Tie Rod Tool Item No:DN-B1571 |
Ball Joint Press Tool Set 10PC Item No:DN-B1041 |
Pull And Press Sleeve Kit 27pc Item No:DN-D1571 |
Hydraulic Ball Joint Separator Item No:DN-D1088 |
Fork Ball Joint Removal Tool 3 Pc Item No:DN-B1031 |
More bearing puller type to choose
Wheel Bearing Tools | Spring Compressor | Ball Joint Tools | Bearing Puller | Nut Splitter |
Company Profile
Certifications
FAQ
Q0: Where is your market?
A: We have customers world widely. And our main market is in Europe, US.
Q1: How to get free sample?
A:Yes . Sample are welcome for us . But products cost and shipping fee will be charged from customer , the sample cost will be returned back in formal order
Q2: Do you have MOQ for order?
A: Yes, our MOQ should be 100-500 pcs t based on different items.
Q3: Can you do OEM for us ?
A:Yes, our MOQ should be 100-500 pcs t based on different items,Customers’ brand ,logo , label can be customized for the products and carton package , but based on a certain quantity .
Q4: Could you custom new tool? how to do it?
A:Yes,We own a technical tearm,they will help customer to custom NEW Tools according to sample,drawing,or customer’s good idea about new tools.Meanwhile we will CHINAMFG confidentiality agreement with custom to protect customer’s right
Q5: what are your main products?
A:DNT Tools is source tool manufacturer from China,Main product are hand tools,tool sets,workshop tools and mechanic tools.contain:bearing puller,nut splitter,Hydraulic pullers,hydraulic nut breakers,and so on.
Q6: What is your terms of packing?
A:Generally, we pack our goods in neutral white boxes,brown cartons and Carry case. lf you have legally registered patent, we can pack the goods in your branded boxes after getting your authorization letters. We can also Design the packing fit your local market.
Q7: How about your delivery time?
A: Generally, Delivery time for new customer will be around 45 days.
But for old customers, packing designs have been confirmed.
We will be able to finish production earlier.
Q8: Do you test all your goods before delivery?
A: Yes, we have test before delivery.and make QC Report to customer
Q9: How do you make our business long-term and good relationship?
A:1. We keep good quality to ensure our customers benefit ;
2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 12 Months |
---|---|
Warranty: | 12 Months |
Type: | Inner Ball Joint Removal Tool |
Standard: | Standard |
Certification: | ISO, SGS |
Condition: | New |
Samples: |
US$ 60/Set
1 Set(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Can universal joints be used in marine and offshore applications?
Yes, universal joints can be used in marine and offshore applications. Here’s a detailed explanation:
Marine and offshore environments present unique challenges in terms of harsh operating conditions, exposure to saltwater, vibrations, and high torque requirements. Universal joints offer several advantages that make them suitable for use in these demanding applications.
1. Misalignment Compensation: Marine and offshore systems often require the transmission of rotary motion between misaligned shafts due to the dynamic nature of the environment. Universal joints excel at compensating for angular misalignment, allowing for smooth power transmission even when the shafts are not perfectly aligned.
2. Torque Transmission: Universal joints are capable of handling high torque loads, which is crucial in marine and offshore applications. They can efficiently transfer power between the main engine or motor and various equipment, such as propellers, winches, pumps, or generators.
3. Compact Design: Space is often limited in marine and offshore systems, and universal joints offer a compact design compared to alternative methods of transmitting motion between misaligned shafts, such as gearboxes or flexible couplings. This compactness allows for more efficient use of available space.
4. Corrosion Resistance: Marine and offshore environments are highly corrosive due to the presence of saltwater and other corrosive agents. Universal joints can be designed and manufactured using materials that exhibit excellent corrosion resistance, such as stainless steel or non-corroding alloys, to ensure long-term performance and reliability in these environments.
5. Sealing and Lubrication: Proper sealing and lubrication are critical in marine and offshore applications to protect the universal joint’s internal components from water ingress and corrosion. Specialized sealing mechanisms, such as lip seals or labyrinth seals, can be implemented to prevent water intrusion, while effective lubrication systems ensure smooth operation and reduce wear.
6. Shock and Vibration Resistance: Marine and offshore equipment are subjected to significant shock and vibration loads due to wave motion, vessel movement, or equipment operation. Universal joints are designed to withstand these dynamic forces and provide reliable power transmission in such conditions. The use of high-quality bearings, robust construction, and proper balancing contribute to their resilience against shock and vibration.
7. Customization: Universal joints can be customized to suit specific marine and offshore applications. Manufacturers can tailor the design and materials to meet unique requirements, such as high-speed operation, extreme temperature variations, or specific size constraints. Customization ensures that the universal joints are optimized for their intended use, maximizing their performance and reliability.
When utilizing universal joints in marine and offshore applications, it is crucial to consider factors such as load requirements, environmental conditions, maintenance procedures, and compliance with relevant industry standards and regulations. Regular inspection, maintenance, and proper lubrication are necessary to ensure the longevity and reliable operation of universal joints in these challenging environments.
In summary, universal joints can be effectively used in marine and offshore applications due to their ability to compensate for misalignment, handle high torque loads, compact design, corrosion resistance, sealing and lubrication capabilities, shock and vibration resistance, and customization options. The selection and design of universal joints should consider the specific requirements and challenges associated with marine and offshore environments to ensure optimal performance and reliability.
How does a universal joint affect the overall efficiency of a system?
A universal joint can have an impact on the overall efficiency of a system in several ways. The efficiency of a system refers to its ability to convert input power into useful output power while minimizing losses. Here are some factors that can influence the efficiency of a system when using a universal joint:
- Friction and energy losses: Universal joints introduce friction between their components, such as the cross, bearings, and yokes. This friction results in energy losses in the form of heat, which reduces the overall efficiency of the system. Proper lubrication and maintenance of the universal joint can help minimize friction and associated energy losses.
- Angular misalignment: Universal joints are commonly used to transmit torque between non-aligned or angularly displaced shafts. However, when the input and output shafts are misaligned, it can lead to increased angular deflection, resulting in energy losses due to increased friction and wear. The greater the misalignment, the higher the energy losses, which can affect the overall efficiency of the system.
- Backlash and play: Universal joints can have inherent backlash and play, which refers to the amount of rotational movement that occurs before the joint begins to transmit torque. Backlash and play can lead to decreased efficiency in applications that require precise positioning or motion control. The presence of backlash can cause inefficiencies, especially when reversing rotational direction or during rapid changes in torque direction.
- Mechanical vibrations: Universal joints can generate mechanical vibrations during operation. These vibrations can result from factors such as angular misalignment, imbalance, or variations in joint geometry. Mechanical vibrations not only reduce the efficiency of the system but can also contribute to increased wear, fatigue, and potential failure of the joint or other system components. Vibration damping techniques, proper balancing, and maintenance can help mitigate the negative effects of vibrations on system efficiency.
- Operating speed: The operating speed of a system can also impact the efficiency of a universal joint. At high rotational speeds, the limitations of the joint’s design, such as imbalance, increased friction, or decreased precision, can become more pronounced, leading to reduced efficiency. It’s important to consider the specific speed capabilities and limitations of the universal joint to ensure optimal system efficiency.
Overall, while universal joints are widely used and provide flexibility in transmitting torque between non-aligned shafts, their design characteristics and operational considerations can affect the efficiency of a system. Proper maintenance, lubrication, alignment, and consideration of factors such as misalignment, backlash, vibrations, and operating speed contribute to maximizing the efficiency of the system when utilizing a universal joint.
Are there different types of universal joints available?
Yes, there are different types of universal joints available to suit various applications and requirements. Let’s explore some of the commonly used types:
- Single Joint (Cardan Joint): The single joint, also known as a Cardan joint, is the most basic and widely used type of universal joint. It consists of two yokes connected by a cross-shaped center piece. The yokes are typically 90 degrees out of phase with each other, allowing for angular displacement and misalignment between shafts. Single joints are commonly used in automotive drivelines and industrial applications.
- Double Joint: A double joint, also referred to as a double Cardan joint or a constant velocity joint, is an advanced version of the single joint. It consists of two single joints connected in series with an intermediate shaft in between. The use of two joints in series helps to cancel out the velocity fluctuations and reduce vibration caused by the single joint. Double joints are commonly used in automotive applications, especially in front-wheel-drive vehicles, to provide constant velocity power transmission.
- Tracta Joint: The Tracta joint, also known as a tripod joint or a three-roller joint, is a specialized type of universal joint. It consists of three rollers or balls mounted on a spider-shaped center piece. The rollers are housed in a three-lobed cup, allowing for flexibility and articulation. Tracta joints are commonly used in automotive applications, particularly in front-wheel-drive systems, to accommodate high-speed rotation and transmit torque smoothly.
- Rzeppa Joint: The Rzeppa joint is another type of constant velocity joint commonly used in automotive applications. It features six balls positioned in grooves on a central sphere. The balls are held in place by an outer housing with an inner race. Rzeppa joints provide smooth power transmission and reduced vibration, making them suitable for applications where constant velocity is required, such as drive axles in vehicles.
- Thompson Coupling: The Thompson coupling, also known as a tripodal joint, is a specialized type of universal joint. It consists of three interconnected rods with spherical ends. The arrangement allows for flexibility and misalignment compensation. Thompson couplings are often used in applications where high torque transmission is required, such as industrial machinery and power transmission systems.
These are just a few examples of the different types of universal joints available. Each type has its own advantages and is suitable for specific applications based on factors such as torque requirements, speed, angular displacement, and vibration reduction. The selection of the appropriate type of universal joint depends on the specific needs of the application.
editor by CX 2023-12-21